Skip to main content
Log in

Myristic Acid Enhances Diacylglycerol Kinase δ-Dependent Glucose Uptake in Myotubes

  • Original Article
  • Published:
Lipids

Abstract

Decreased expression of diacylglycerol kinase (DGK) δ in skeletal muscles attenuates glucose uptake and is closely related to the pathogenesis of type 2 diabetes. Therefore, up-regulation of DGKδ expression is thought to protect and improve glucose homoeostasis in type 2 diabetes. We recently determined that myristic acid (14:0), but not palmitic (16:0) or stearic (18:0) acid, significantly increased DGKδ2 protein expression in mouse C2C12 myotubes. In the current study, we analyzed whether myristic acid indeed enhances glucose uptake in C2C12 myotubes. We observed that myristic acid caused ~1.4-fold increase in insulin-independent glucose uptake. However, palmitic and stearic acids failed to enhance glucose uptake. DGKδ-specific siRNA decreased myristic acid-dependent increase of glucose uptake. Moreover, overexpression of DGKδ2 enhanced glucose uptake in C2C12 cells in the absence of myristic acid treatment. Taken together, these results strongly suggest that myristic acid enhances basal glucose uptake in myotubes in a DGKδ2 expression-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

DG:

Diacylglycerol

DGK:

Diacylglycerol kinase

2-NBDG:

2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose

References

  1. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103:137–149

    Article  CAS  PubMed  Google Scholar 

  2. Biddinger SB, Kahn CR (2006) From mice to men: insights into the insulin resistance syndromes. Annu Rev Physiol 68:123–158

    Article  CAS  PubMed  Google Scholar 

  3. Kraegen EW, Saha AK, Preston E, Wilks D, Hoy AJ, Cooney GJ, Ruderman NB (2006) Increased malonyl-CoA and diacylglycerol content and reduced AMPK activity accompany insulin resistance induced by glucose infusion in muscle and liver of rats. Am J Physiol Endocrinol Metab 290:E471–E479

    Article  CAS  PubMed  Google Scholar 

  4. Goto K, Hozumi Y, Kondo H (2006) Diacylglycerol, phosphatidic acid, and the converting enzyme, diacylglycerol kinase, in the nucleus. Biochim Biophys Acta 1761:535–541

    Article  CAS  PubMed  Google Scholar 

  5. Merida I, Avila-Flores A, Merino E (2008) Diacylglycerol kinases: at the hub of cell signalling. Biochem J 409:1–18

    Article  CAS  PubMed  Google Scholar 

  6. Sakane F, Imai S, Kai M, Yasuda S, Kanoh H (2007) Diacylglycerol kinases: why so many of them? Biochim Biophys Acta 1771:793–806

    Article  CAS  PubMed  Google Scholar 

  7. Shulga YV, Topham MK, Epand RM (2011) Regulation and functions of diacylglycerol kinases. Chem Rev 111:6186–6208

    Article  CAS  PubMed  Google Scholar 

  8. van Blitterswijk WJ, Houssa B (2000) Properties and functions of diacylglycerol kinases. Cell Signal 12:595–605

    Article  PubMed  Google Scholar 

  9. Sakane F, Imai S, Kai M, Wada I, Kanoh H (1996) Molecular cloning of a novel diacylglycerol kinase isozyme with a pleckstrin homology domain and a C-terminal tail similar to those of the EPH family of protein tyrosine kinase. J Biol Chem 271:8394–8401

    Article  CAS  PubMed  Google Scholar 

  10. Sakane F, Imai S, Yamada K, Murakami T, Tsushima S, Kanoh H (2002) Alternative splicing of the human diacylglycerol kinase δ gene generates two isoforms differing in their expression patterns and in regulatory functions. J Biol Chem 277:43519–43526

    Article  CAS  PubMed  Google Scholar 

  11. Klauck TM, Xu X, Mousseau B, Jaken S (1996) Cloning and characterization of a glucocorticoid-induced diacylglycerol kinase. J Biol Chem 271:19781–19788

    Article  CAS  PubMed  Google Scholar 

  12. Murakami T, Sakane F, Imai S, Houkin K, Kanoh H (2003) Identification and characterization of two splice variants of human diacylglycerol kinase η. J Biol Chem 278:34364–34372

    Article  CAS  PubMed  Google Scholar 

  13. Imai S, Kai M, Yasuda S, Kanoh H, Sakane F (2005) Identification and characterization of a novel human type II diacylglycerol kinase, DGKκ. J Biol Chem 280:39870–39881

    Article  CAS  PubMed  Google Scholar 

  14. DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP (1981) The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 30:1000–1007

    Article  CAS  PubMed  Google Scholar 

  15. Chibalin AV, Leng Y, Vieira E, Krook A, Bjornholm M, Long YC, Kotova O, Zhong Z, Sakane F, Steiler T, Nylen C, Wang J, Laakso M, Topham MK, Gilbert M, Wallberg-Henriksson H, Zierath JR (2008) Downregulation of diacylglycerol kinase delta contributes to hyperglycemia-induced insulin resistance. Cell 132:375–386

    Article  CAS  PubMed  Google Scholar 

  16. Miele C, Paturzo F, Teperino R, Sakane F, Fiory F, Oriente F, Ungaro P, Valentino R, Beguinot F, Formisano P (2007) Glucose regulates diacylglycerol intracellular levels and protein kinase C activity by modulating diacylglycerol-kinase subcellular localization. J Biol Chem 282:31835–31843

    Article  CAS  PubMed  Google Scholar 

  17. Takeuchi M, Sakiyama S, Usuki T, Sakai H, Sakane F (2012) Diacylglycerol kinase δ1 transiently translocates to the plasma membrane in response to high glucose. Biochim Biophys Acta Mol Cell Res 1823:2210–2216

    Article  CAS  Google Scholar 

  18. Sakai H, Kado S, Taketomi A, Sakane F (2014) Diacylglycerol kinase δ phosphorylates phosphatidylcholine-specific phospholipase C-dependent, palmitic acid-containing diacylglycerol species in response to high glucose levels. J Biol Chem 289:26607–26617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sakiyama S, Usuki T, Sakai H, Sakane F (2014) Regulation of diacylglycerol kinase delta2 expression in C2C12 skeletal muscle cells by free fatty acids. Lipids 49:633–640

    Article  CAS  PubMed  Google Scholar 

  20. Deng YT, Chang TW, Lee MS, Lin JK (2012) Suppression of free fatty acid-induced insulin resistance by phytopolyphenols in C2C12 mouse skeletal muscle cells. J Agric Food Chem 60:1059–1066

    Article  CAS  PubMed  Google Scholar 

  21. Imai S, Yasuda S, Kai M, Kanoh H, Sakane F (2009) Diacylglycerol kinase δ associates with receptor for activated C kinase 1, RACK1. Biochim Biophys Acta 1791:246–253

    Article  CAS  PubMed  Google Scholar 

  22. Dimopoulos N, Watson M, Sakamoto K, Hundal HS (2006) Differential effects of palmitate and palmitoleate on insulin action and glucose utilization in rat L6 skeletal muscle cells. Biochem J 399:473–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Montell E, Turini M, Marotta M, Roberts M, Noe V, Ciudad CJ, Mace K, Gomez-Foix AM (2001) DAG accumulation from saturated fatty acids desensitizes insulin stimulation of glucose uptake in muscle cells. Am J Physiol Endocrinol Metab 280:E229–E237

    CAS  PubMed  Google Scholar 

  24. Pu J, Peng G, Li L, Na H, Liu Y, Liu P (2011) Palmitic acid acutely stimulates glucose uptake via activation of Akt and ERK1/2 in skeletal muscle cells. J Lipid Res 52:1319–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gordon JI, Duronio RJ, Rudnick DA, Adams SP, Gokel GW (1991) Protein N-myristoylation. J Biol Chem 266:8647–8650

    CAS  PubMed  Google Scholar 

  26. Chavez JA, Knotts TA, Wang LP, Li G, Dobrowsky RT, Florant GL, Summers SA (2003) A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem 278:10297–10303

    Article  CAS  PubMed  Google Scholar 

  27. Deshmukh AS, Murgia M, Nagaraj N, Treebak JT, Cox J, Mann M (2015) Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors. Mol Cell Proteom 14:841–853

    Article  CAS  Google Scholar 

  28. Han JH, Kim IS, Jung SH, Lee SG, Son HY, Myung CS (2014) The effects of propionate and valerate on insulin responsiveness for glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes via G protein-coupled receptor 41. PLoS One 9:e95268

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by MEXT/JSPS KAKENHI Grant Nos. 22370047 [Grant-in-Aid for Scientific Research (B)], 23116505 (Grant-in-Aid for Scientific Research on Innovative Areas), 25116704 (Grant-in-Aid for Scientific Research on Innovative Areas), 26291017 [Grant-in-Aid for Scientific Research (B)], and 15K14470 (Grant-in-Aid for Challenging Exploratory Research), the Japan Science and Technology Agency (AS221Z00794F, AS231Z00139G, AS251Z01788Q, and AS2621643Q), the Naito Foundation, the Hamaguchi Foundation for the Advancement of Biochemistry, the Daiichi-Sankyo Foundation of Life Science, the Terumo Life Science Foundation, the Futaba Electronic Memorial Foundation, the Daiwa Securities Health Foundation, the Ono Medical Research Foundation, the Japan Foundation for Applied Enzymology, the Food Science Institute Foundation, the Skylark Food Science Institute and the Venture Business Laboratory of Chiba University (FS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumio Sakane.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to disclose.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wada, Y., Sakiyama, S., Sakai, H. et al. Myristic Acid Enhances Diacylglycerol Kinase δ-Dependent Glucose Uptake in Myotubes. Lipids 51, 897–903 (2016). https://doi.org/10.1007/s11745-016-4162-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4162-9

Keywords

Navigation