Skip to main content
Log in

Dolichol: A Component of the Cellular Antioxidant Machinery

  • Original Article
  • Published:
Lipids

Abstract

Dolichol, an end product of the mevalonate pathway, has been proposed as a biomarker of aging, but its biological role, not to mention its catabolism, has not been fully understood. UV-B radiation was used to induce oxidative stress in isolated rat hepatocytes by the collagenase method. Effects on dolichol, phospholipid-bound polyunsaturated fatty acids (PL-PUFA) and known lipid soluble antioxidants [coenzyme Q (CoQ) and α-tocopherol] were studied. The increase in oxidative stress was detected by a probe sensitive to reactive oxygen species (ROS). Peroxidation of lipids was assessed by measuring the release of thiobarbituric acid reactive substances (TBARS). Dolichol, CoQ, and α-tocopherol were assessed by high-pressure liquid chromatography (HPLC), PL-PUFA by gas–liquid chromatography (GC). UV-B radiation caused an immediate increase in ROS as well as lipid peroxidation and a simultaneous decrease in the levels of dolichol and lipid soluble antioxidants. Decrease in dolichol paralleled changes in CoQ levels and was smaller to that in α-tocopherol. The addition of mevinolin, a competitive inhibitor of the enzyme 3-hydroxy-3-methylglutaryl CoA reductase (HMG-CoAR), magnified the loss of dolichol and was associated with an increase in TBARS production. Changes in PL-PUFA were minor. These findings highlight that oxidative stress has very early and similar effects on dolichol and lipid soluble antioxidants. Lower levels of dolichol are associated with enhanced peroxidation of lipids, which suggest that dolichol may have a protective role in the antioxidant machinery of cell membranes and perhaps be a key to understanding some adverse effects of statin therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CoQ:

Coenzyme Q

DCFH-DA:

2′,7′-dichlorodihydro-fuorescein diacetate

FA:

Fatty acid(s)

FAME:

Fatty acid methyl esters

GC:

Gas–liquid chromatography

HMG-CoAR:

3-hydroxy-3-methylglutaryl CoA reductase

HPLC:

High-pressure liquid chromatography

MDA:

Malondialdehyde

OS:

Oxidative stress

PL:

Phospholipid(s)

PL-PUFA:

Phospholipid-bound polyunsaturated fatty acid(s)

ROS:

Reactive oxygen species

TBARS:

Thiobarbituric acid reactive substances

Trolox:

6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid

UV-B:

Ultraviolet-B

References

  1. Freidovich I (1999) Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? Ann NY Acad Sci 893:13–18

    Article  Google Scholar 

  2. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  3. Sies H (1993) Strategies of antioxidant defense. Eur J Biochem 215:213–219

    Article  CAS  PubMed  Google Scholar 

  4. Chojnacki T, Dallner G (1988) The biological role of dolichol. Biochem J 251:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kalén A, Appelkvist EL, Dallner G (1989) Age-related changes in the lipid compositions of rat and human tissues. Lipids 24:579–584

    Article  PubMed  Google Scholar 

  6. Daniels I, Hemming FW (1990) Changes in murine tissue concentrations of dolichol and dolichol derivatives associated with age. Lipids 25:586–593

    Article  CAS  PubMed  Google Scholar 

  7. Marino M, Dolfi C, Paradiso C, Cavallini G, Masini M, Gori Z, Pollera M, Trentalance A, Bergamini E (1998) Age-dependent accumulation of dolichol in rat liver: is tissue dolichol a biomarker of aging? J Gerontol A Biol Sci Med Sci 53:B87–B93

    Article  CAS  PubMed  Google Scholar 

  8. Cavallini G, Dolfi C, Donati A, Maccheroni M, Parentini I, Gori Z, Bergamini E (2003) Effect of increasing age on tissue dolichol levels in ad libitum and food restricted rats. Biogerontology 4:341–345

    Article  CAS  PubMed  Google Scholar 

  9. Parentini I, Cavallini G, Donati A, Gori Z, Bergamini E (2005) Accumulation of dolichol in older tissues satisfies the criteria to be qualified a biomarker of aging. J Gerontol A Biol Sci Med Sci 60:39–43

    Article  PubMed  Google Scholar 

  10. Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430

    Article  CAS  PubMed  Google Scholar 

  11. Pallottini V, Montanari L, Cavallini G, Bergamini E, Gori Z, Trentalance A (2004) Mechanisms underlying the impaired regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in aged rat liver. Mech Ageing Dev 125:633–639

    Article  CAS  PubMed  Google Scholar 

  12. Pallottini V, Martini C, Cavallini G, Bergamini E, Mustard KJ, Hardie DG, Trentalance A (2007) Age-related HMG-CoA reductase deregulation depends on ROS-induced p38 activation. Mech Ageing Dev 128:688–695

    Article  CAS  PubMed  Google Scholar 

  13. Pallottini V, Martini C, Pascolini A, Cavallini G, Gori Z, Bergamini E, Incerpi S, Trentalance A (2005) 3-Hydroxy-3-methylglutaryl coenzyme A reductase deregulation and age-related hypercholesterolemia: a new role for ROS. Mech Ageing Dev 126:845–851

    Article  CAS  PubMed  Google Scholar 

  14. Surmacz L, Swiezewska E (2011) Polyisoprenoids—secondary metabolites or physiologically important superlipids? Biochem Biophys Res Commun 407:627–632

    Article  CAS  PubMed  Google Scholar 

  15. Sanyal S, Menon AK (2010) Stereoselective transbilayer translocation of mannosyl phosphoryl dolichol by an endoplasmic reticulum flippase. Proc Natl Acad Sci USA 107:11289–11294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Buczkowska A, Swiezewska E, Lefeber DJ (2015) Genetic defects in dolichol metabolism. J Inherit Metab Dis 38:157–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Van Houte HA, Van Veldhoven PP, Mannaerts GP, Baes MI, Declercq PE (1997) Metabolism of dolichol, dolichoic acid and nordolichoic acid in cultured cells. Biochim Biophys Acta 1347:93–100

    Article  PubMed  Google Scholar 

  18. Carroll KK, Guthrie N, Ravi K (1992) Dolichol: function, metabolism, and accumulation in human tissues. Biochem Cell Biol 70:382–384

    Article  CAS  PubMed  Google Scholar 

  19. Cavallini G, Parentini I, Di Stefano R, Maccheroni M, Masini M, Pollera M, Gori Z, Mosca F, Bergamini E (2002) Dolichol levels in younger and older rat hearts heterotopically transplanted in younger recipients. Lipids 37:913–916

    Article  CAS  PubMed  Google Scholar 

  20. Bizzarri R, Cerbai B, Signori F, Solaro R, Bergamini E, Tamburini I, Chiellini E (2003) New perspectives for (S)-dolichol and (S)-nordolichol synthesis and biological functions. Biogerontology 4:353–363

    Article  CAS  PubMed  Google Scholar 

  21. Parentini I, Bergamini E, Cecchi L, Cavallini G, Donati A, Maccheroni M, Tamburini I, Gori Z (2003) The effect of carbon tetrachloride and ultraviolet radiation on dolichol levels in liver cells isolated from 3- and 24-month-old male Sprague-Dawley rats. Biogerontology 4:365–370

    Article  CAS  PubMed  Google Scholar 

  22. Sgarbossa A, Lenci F, Bergamini E, Bizzarri R, Cerbai B, Signori F, Gori Z, Maccheroni M (2003) Dolichol: a solar filter with UV-absorbing properties which can be photoenhanced. Biogerontology 4:379–386

    Article  CAS  PubMed  Google Scholar 

  23. Bergamini E, Bizzarri R, Cavallini G, Cerbai B, Chiellini E, Donati A, Gori Z, Manfrini A, Parentini I, Signori F, Tamburini I (2004) Ageing and oxidative stress: a role for dolichol in the antioxidant machinery of cell membranes? J Alzheimer Dis 6:129–135

    CAS  Google Scholar 

  24. Seglen PO (1976) Preparation of isolated liver cells. Methods Cell Biol 13:29–83

    Article  CAS  PubMed  Google Scholar 

  25. Cathcart R, Schwiers E, Ames BN (1983) Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal Biochem 134:111–116

    Article  CAS  PubMed  Google Scholar 

  26. Crow JP (1997) Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide 1:145–157

    Article  CAS  PubMed  Google Scholar 

  27. Burow S, Valet G (1987) Flow-cytometric characterization of stimulation, free radical formation, peroxidase activity and phagocytosis of human granulocytes with 2,7-dichloroflorescein (DCF). Eur J Cell Biol 43:128–133

    CAS  PubMed  Google Scholar 

  28. Rastogi RP, Singh SP, Häder DP, Sinha RP (2010) Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′,7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem Biophys Res Commun 397:603–607

    Article  CAS  PubMed  Google Scholar 

  29. Cavallini G, Dachà M, Potenza L, Ranieri A, Scattino C, Castagna A, Bergamini E (2014) Use of red blood cell membranes to evaluate the antioxidant potential of plant extracts. Plant Foods Hum Nutr 69:108–114

    Article  CAS  PubMed  Google Scholar 

  30. Grotto D, Santa Maria LD, Boeira S, Valentini J, Charão MF, Moro AM, Nascimento PC, Pomblum VJ, Garcia SC (2007) Rapid quantification of malondialdehyde in plasma by high performance liquid chromatography-visible detection. J Pharm Biomed Anal 43:619–624

    Article  CAS  PubMed  Google Scholar 

  31. Folch J, Lees M, Sloane-Stanley G (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  32. Quartacci MF, Cosi E, Navari-Izzo F (2001) Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. J Exp Bot 52:77–84

    Article  CAS  PubMed  Google Scholar 

  33. Pamplona R, Portero-Otín M, Ruiz C, Gredilla R, Herrero A, Barja G (2000) Double bond content of phospholipids and lipid peroxidation negatively correlate with maximum longevity in the heart of mammals. Mech Ageing Dev 112:169–183

    Article  CAS  PubMed  Google Scholar 

  34. Lang JK, Gohil K, Packer L (1986) Simultaneous determination of tocopherols, ubiquinols, and ubiquinones in blood, plasma, tissue homogenates, and subcellular fractions. Anal Biochem 157:106–116

    Article  CAS  PubMed  Google Scholar 

  35. Maltese WA, Erdman RA (1989) Characterization of isoprenoid involved in the post-translational modification of mammalian cell proteins. J Biol Chem 264:18168–18172

    CAS  PubMed  Google Scholar 

  36. Rupérez FJ, Barbas C, Castro M, Martìnez S, Herrera E (1998) Simplified method for vitamin E determination in rat adipose tissue and mammary glands by high-performance liquid chromatography. J Chromatogr A 823:483–487

    Article  PubMed  Google Scholar 

  37. Davies MJ, Forni LG, Willson RL (1988) Vitamin E analogue Trolox C. E.s.r. and pulse-radiolysis studies of free-radical reactions. Biochem J 255:513–522

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ouedraogo GD, Redmond RW (2003) Secondary reactive oxygen species extend the range of photosensitization effects in cells: DNA damage produced via initial membrane photosensitization. Photochem Photobiol 77:192–203

    Article  CAS  PubMed  Google Scholar 

  39. Besselink GA, van Engelenburg FA, Ebbing IG, Hilarius PM, de Korte D, Verhoeven AJ (2003) Additive effects of dipyridamole and Trolox in protecting human red cells during photodynamic treatment. Vox Sang 85:25–30

    Article  CAS  PubMed  Google Scholar 

  40. Boaz NT (2002) Evolving health: the origins of illness and how the modern world is making us sick. Wiley, New York

    Google Scholar 

  41. Pattison DI, Davies MJ (2006) Actions of ultraviolet light on cellular structures. EXS 96:131–157

    CAS  PubMed  Google Scholar 

  42. Jurkiewicz BA, Buettner GR (1994) Ultraviolet light-induced free radical formation in skin: an electron paramagnetic resonance study. Photochem Photobiol 59:1–4

    Article  CAS  PubMed  Google Scholar 

  43. Fuchs J, Huflejt ME, Rothfuss LM, Wilson DS, Carcamo G, Packer LJ (1989) Impairment of enzymic and nonenzymic antioxidants in skin by UVB irradiation. Invest Dermatol 93:769–773

    Article  CAS  Google Scholar 

  44. Podda M, Traber MG, Weber C, Yan LJ, Packer LJ (1998) UV-irradiation depletes antioxidants and causes oxidative damage in a model of human skin. Free Radic Biol Med 24:55–65

    Article  CAS  PubMed  Google Scholar 

  45. Li Y, Fu J, Yuan X, Hu C (2014) Simvastatin inhibits the proliferation of A549 lung cancer cells through oxidative stress and up-regulation of SOD2. Pharmazie 69:610–614

    CAS  PubMed  Google Scholar 

  46. Pallottini V, Martini C, Bassi AM, Romano P, Nanni G, Trentalance A (2006) Rat HMGCoA reductase activation in thioacetamide-induced liver injury is related to an increased reactive oxygen species content. J Hepatol 44:368–374

    Article  CAS  PubMed  Google Scholar 

  47. Fedorow H, Pickford R, Hook JM, Double KL, Halliday GM, Gerlach M, Riederer P, Garner B (2005) Dolichol is the major lipid component of human substantia nigra neuromelanin. J Neurochem 92:990–995

    Article  CAS  PubMed  Google Scholar 

  48. Ward WC, Zucca FA, Bellei C, Zecca L, Simon JD (2009) Neuromelanins in various regions of human brain are associated with native and oxidized isoprenoid lipids. Arch Biochem Biophys 484:94–99

    Article  CAS  PubMed  Google Scholar 

  49. Ishiguro T, Morita-Fujimura Y, Shidoji Y, Sagami H (2014) Dolichol biosynthesis: the occurrence of epoxy dolichol in skipjack tuna liver. Biochem Biophys Res Commun 453:277–281

    Article  CAS  PubMed  Google Scholar 

  50. Zhou GP, Troy FA 2nd (2005) NMR study of the preferred membrane orientation of polyisoprenols (dolichol) and the impact of their complex with polyisoprenyl recognition sequence peptides on membrane structure. Glycobiology 15:347–359

    Article  CAS  PubMed  Google Scholar 

  51. Ciepichal E, Jemiola-Rzeminska M, Hertel J, Swiezewska E, Strzalka K (2011) Configuration of polyisoprenoids affects the permeability and thermotropic properties of phospholipid/polyisoprenoid model membranes. Chem Phys Lipids 164:300–306

    Article  CAS  PubMed  Google Scholar 

  52. Dallner G, Sindelar PJ (2000) Regulation of ubiquinone metabolism. Free Radic Biol Med 29:285–294

    Article  CAS  PubMed  Google Scholar 

  53. Dini B, Dolfi C, Santucci V, Cavallini G, Donati A, Gori Z, Maccheroni M, Bergamini E (2001) Effects of ageing and increased haemolysis on the levels of dolichol in rat spleen. Exp Gerontol 37:99–105

    Article  CAS  PubMed  Google Scholar 

  54. Molińska Nee Sosińska E, Klimczak U, Komaszyło J, Derewiaka D, Obiedziński M, Kania M, Danikiewicz W, Swiezewska E (2015) Double bond stereochemistry influences the susceptibility of short-chain isoprenoids and polyprenols to decomposition by thermo-oxidation. Lipids 50:359–370

    Article  Google Scholar 

  55. Komaszylo Née Siedlecka J, Kania M, Masnyk M, Cmoch P, Lozinska I, Czarnocki Z, Skorupinska-Tudek K, Danikiewicz W, Swiezewska E (2016) Isoprenoid alcohols are susceptible to oxidation with singlet oxygen and hydroxyl radicals. Lipids 51:229–244

    Article  PubMed  PubMed Central  Google Scholar 

  56. de Ropp JS, Troy FA (1985) 2H NMR investigation of the organization and dynamics of polyisoprenols in membranes. J Biol Chem 260:15669–15674

    PubMed  Google Scholar 

  57. Guarini M, Stabile A, Cavallini G, Donati A, Bergamini E (2007) Effects of oxidative stress on the dolichol content of isolated rat liver cells. Free Radic Res 41:1283–1288

    Article  CAS  PubMed  Google Scholar 

  58. Bentinger M, Tekle M, Dallner G (2010) Coenzyme Q-biosynthesis and functions. Biochem Biophys Res Commun 396:74–79

    Article  CAS  PubMed  Google Scholar 

  59. Bassi AM, Cottalasso D, Canepa C, Maloberti G, Casu A, Nanni G (2004) Association of thioacetamide and ethanol treatment: dolichol and retinol in isolated rat liver cells. Drug Chem Toxicol 27:55–67

    Article  CAS  PubMed  Google Scholar 

  60. Tamburini I, Quartacci MF, Izzo R, Bergamini E (2004) Effects of dietary restriction on age-related changes in the phospholipid fatty acid composition of various rat tissues. Aging Clin Exp Res 16:425–431

    Article  CAS  PubMed  Google Scholar 

  61. Bergamini E, Cavallini G, Donati A, Gori Z (2004) The role of macroautophagy in the ageing process, anti-ageing intervention and age-associated diseases. Int J Biochem Cell Biol 36:2392–2404

    Article  CAS  PubMed  Google Scholar 

  62. Magni P, Macchi C, Morlotti B, Sirtori CR, Ruscica M (2015) Risk identification and possible countermeasures for muscle adverse effects during statin therapy. Eur J Intern Med 26:82–88

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Cavallini.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

This paper is dedicated to the memory of Gabriele Chiti, a skilful technician and a dear friend of the Biophysics Institute of the National Research Council, who prematurely passed away.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavallini, G., Sgarbossa, A., Parentini, I. et al. Dolichol: A Component of the Cellular Antioxidant Machinery. Lipids 51, 477–486 (2016). https://doi.org/10.1007/s11745-016-4137-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4137-x

Keywords

Navigation