Skip to main content
Log in

High-Fat Diets Containing Different Amounts of n3 and n6 Polyunsaturated Fatty Acids Modulate Inflammatory Cytokine Production in Mice

  • Original Article
  • Published:
Lipids

Abstract

Dysregulation of adipokines is a hallmark of obesity. Polyunsaturated fatty acids in fish oil may exert anti-inflammatory effects on adipose tissue mitigating the dysregulation of adipokines thereby preventing obesity. This study investigated the effects of high-fat diets containing different amounts of n3 polyunsaturated fatty acids (PUFA) on adiposity and adipokine production in mice. Mice were fed a low-fat or a high-fat diet with 16 or 45 % of energy from corn oil (low n3 PUFA) in comparison with a high-fat diet containing soybean or high-oleic sunflower oil (adequate n3 PUFA) or flaxseed or fish oil (high n3 PUFA) for 11 weeks. High-fat diets, regardless of types of oils, significantly increased body fat mass and body weights compared to the low-fat diet. Adipose fatty acid composition and contents reflected dietary fatty acid profiles. The high-fat fish oil diet significantly increased adiponectin and reduced leptin concentrations in both plasma and adipose tissue; it did not elevate plasma insulin concentration compared to the high-fat corn oil diet. All high-fat diets elevated concentrations of plasminogen activator inhibitor-1 (PAI-1) and monocyte chemoattractant protein-1 (MCP-1) but lowered resistin concentrations in both plasma and adipose tissue. In conclusion, fish oil may be beneficial in improving insulin sensitivity by upregulation of adiponectin and downregulation of leptin production; n3 and n6 PUFA do not play a role at the dietary levels tested in reducing adiposity and production of pro-inflammatory cytokines (leptin, PAI-1, MCP-1 and resistin) and anti-inflammatory cytokine adiponectin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ALA :

α-Linolenic acid 18:3n3

DHA :

Docosahexaenoic acid 22:6n3

DPA :

Docosapentaenoic acid 22:5n3

ELISA:

Enzyme-linked immunosorbent assay

EPA :

Eicosapentaenoic acid 20:5n3

LNA :

Linoleic acid 18:2n6

MCP-1:

Monocyte chemoattractant protein-1

MUFA:

Monounsaturated fatty acids

PAI-1:

Plasminogen activator inhibitor-1

PUFA:

Polyunsaturated fatty acids

SFA:

Saturated fatty acids

References

  1. FastStats (2014) Obesity and Overweights. CDC; http://www.cdc.gov/nchs/fastats/obesity-overweight.htm

  2. Williams KW, Scott MM, Elmquist JK (2009) From observation to experimentation: leptin action in the mediobasal hypothalamus. Am J Clin Nutr 89:985S–990S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Staiger H, Tschritter O, Machann J, Thamer C, Fritsche A, Maerker E, Schick F, Haring HU, Stumvoll M (2003) Relationship of serum adiponectin and leptin concentrations with body fat distribution in humans. Obes Res 11:368–372

    Article  CAS  PubMed  Google Scholar 

  4. Diez JJ, Iglesias P (2003) The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol 148:293–300

    Article  CAS  PubMed  Google Scholar 

  5. Tajtakova M, Petrasova D, Petrovicova J, Pytliak M, Semanova Z (2006) Adiponectin as a biomarker of clinical manifestation of metabolic syndrome. Endocr Regul 40:15–19

    CAS  PubMed  Google Scholar 

  6. Eriksson P, Reynisdottir S, Lonnqvist F, Stemme V, Hamsten A, Arner P (1998) Adipose tissue secretion of plasminogen activator inhibitor-1 in non-obese and obese individuals. Diabetologia 41:65–71

    Article  CAS  PubMed  Google Scholar 

  7. Christiansen T, Richelsen B, Bruun JM (2005) Monocyte chemoattractant protein-1 is produced in isolated adipocytes, associated with adiposity and reduced after weight loss in morbid obese subjects. Int J Obes 29:146–150

    Article  CAS  Google Scholar 

  8. Degawa-Yamauchi M, Bovenkerk JE, Juliar BE, Watson W, Kerr K, Jones R, Zhu Q, Considine RV (2003) Serum resistin (FIZZ3) protein is increased in obese humans. J Clin Endocrinol Metab 88:5452–5455

    Article  CAS  PubMed  Google Scholar 

  9. Yan L, Graef GL, Claycombe KJ, Johnson LK (2013) Effects of voluntary running and soy supplementation on diet-induced metabolic disturbances and inflammation in mice. J Agric Food Chem 61:9373–9379

    Article  CAS  PubMed  Google Scholar 

  10. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA (2001) The hormone resistin links obesity to diabetes. Nature 409:307–312

    Article  CAS  PubMed  Google Scholar 

  11. Monzillo LU, Hamdy O, Horton ES, Ledbury S, Mullooly C, Jarema C, Porter S, Ovalle K, Moussa A, Mantzoros CS (2003) Effect of lifestyle modification on adipokine levels in obese subjects with insulin resistance. Obes Res 11:1048–1054

    Article  CAS  PubMed  Google Scholar 

  12. Lopez HL, Ziegenfuss TN, Hofheins JE, Habowski SM, Arent SM, Weir JP, Ferrando AA (2013) Eight weeks of supplementation with a multi-ingredient weight loss product enhances body composition, reduces hip and waist girth, and increases energy levels in overweight men and women. J Int Soc Sports Nutr 10:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Siklova-Vitkova M, Klimcakova E, Polak J, Kovacova Z, Tencerova M, Rossmeislova L, Bajzova M, Langin D, Stich V (2012) Adipose tissue secretion and expression of adipocyte-produced and stromavascular fraction-produced adipokines vary during multiple phases of weight-reducing dietary intervention in obese women. J Clin Endocrinol Metab 97:E1176–E1181

    Article  CAS  PubMed  Google Scholar 

  14. Yan L, DeMars LC, Johnson LK (2012) Long-term voluntary running improves diet-induced adiposity in young adult mice. Nutr Res 32:458–465

    Article  CAS  PubMed  Google Scholar 

  15. Wang HT, Liu CF, Tsai TH, Chen YL, Chang HW, Tsai CY, Leu S, Zhen YY, Chai HT, Chung SY, Chua S, Yen CH, Yip HK (2012) Effect of obesity reduction on preservation of heart function and attenuation of left ventricular remodeling, oxidative stress and inflammation in obese mice. J Transl Med 10:145

    Article  PubMed  PubMed Central  Google Scholar 

  16. Soares FL, de Oliveira Matoso R, Teixeira LG, Menezes Z, Pereira SS, Alves AC, Batista NV, de Faria AM, Cara DC, Ferreira AV, Alvarez-Leite JI (2013) Gluten-free diet reduces adiposity, inflammation and insulin resistance associated with the induction of PPAR-alpha and PPAR-gamma expression. J Nutr Biochem 24:1105–1111

    Article  CAS  PubMed  Google Scholar 

  17. Reseland JE, Haugen F, Hollung K, Solvoll K, Halvorsen B, Brude IR, Nenseter MS, Christiansen EN, Drevon CA (2001) Reduction of leptin gene expression by dietary polyunsaturated fatty acids. J Lipid Res 42:743–750

    CAS  PubMed  Google Scholar 

  18. Kalupahana NS, Voy BH, Saxton AM, Moustaid-Moussa N (2011) Energy-restricted high-fat diets only partially improve markers of systemic and adipose tissue inflammation. Obesity 19:245–254

    Article  CAS  PubMed  Google Scholar 

  19. Sekine S, Sasanuki S, Murano Y, Aoyama T, Takeuchi H (2008) Alpha-linolenic acid-rich flaxseed oil ingestion increases plasma adiponectin level in rats. Int J Vitam Nutr Res 78:223–229

    Article  CAS  PubMed  Google Scholar 

  20. Flachs P, Mohamed-Ali V, Horakova O, Rossmeisl M, Hosseinzadeh-Attar MJ, Hensler M, Ruzickova J, Kopecky J (2006) Polyunsaturated fatty acids of marine origin induce adiponectin in mice fed a high-fat diet. Diabetologia 49:394–397

    Article  CAS  PubMed  Google Scholar 

  21. Gonzalez-Periz A, Horrillo R, Ferre N, Gronert K, Dong B, Moran-Salvador E, Titos E, Martinez-Clemente M, Lopez-Parra M, Arroyo V, Claria J (2009) Obesity-induced insulin resistance and hepatic steatosis are alleviated by omega-3 fatty acids: a role for resolvins and protectins. FASEB J 23:1946–1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lozano A, Perez-Martinez P, Marin C, Tinahones FJ, Delgado-Lista J, Cruz-Teno C, Gomez-Luna P, Rodriguez-Cantalejo F, Perez-Jimenez F, Lopez-Miranda J (2013) An acute intake of a walnut-enriched meal improves postprandial adiponectin response in healthy young adults. Nutr Res 33:1012–1018

    Article  CAS  PubMed  Google Scholar 

  23. Kalupahana NS, Claycombe K, Newman SJ, Stewart T, Siriwardhana N, Matthan N, Lichtenstein AH, Moustaid-Moussa N (2010) Eicosapentaenoic acid prevents and reverses insulin resistance in high-fat diet-induced obese mice via modulation of adipose tissue inflammation. J Nutr 140:1915–1922

    Article  CAS  PubMed  Google Scholar 

  24. Baranowski M, Enns J, Blewett H, Yakandawala U, Zahradka P, Taylor CG (2012) Dietary flaxseed oil reduces adipocyte size, adipose monocyte chemoattractant protein-1 levels and T-cell infiltration in obese, insulin-resistant rats. Cytokine 59:382–391

    Article  CAS  PubMed  Google Scholar 

  25. Itoh M, Suganami T, Satoh N, Tanimoto-Koyama K, Yuan X, Tanaka M, Kawano H, Yano T, Aoe S, Takeya M, Shimatsu A, Kuzuya H, Kamei Y, Ogawa Y (2007) Increased adiponectin secretion by highly purified eicosapentaenoic acid in rodent models of obesity and human obese subjects. Arterioscler Thromb Vasc Biol 27:1918–1925

    Article  CAS  PubMed  Google Scholar 

  26. Bradley RL, Fisher FF, Maratos-Flier E (2008) Dietary fatty acids differentially regulate production of TNF-alpha and IL-10 by murine 3T3-L1 adipocytes. Obesity 16:938–944

    Article  CAS  PubMed  Google Scholar 

  27. Poudyal H, Panchal SK, Waanders J, Ward L, Brown L (2012) Lipid redistribution by alpha-linolenic acid-rich chia seed inhibits stearoyl-CoA desaturase-1 and induces cardiac and hepatic protection in diet-induced obese rats. J Nutr Biochem 23:153–162

    Article  CAS  PubMed  Google Scholar 

  28. Fay MP, Freedman LS, Clifford CK, Midthune DN (1997) Effect of different types and amounts of fat on the development of mammary tumors in rodents: a review. Cancer Res 57:3979–3988

    CAS  PubMed  Google Scholar 

  29. Rose DP (1997) Dietary fatty acids and cancer. Am J Clin Nutr 66:998S–1003S

    CAS  PubMed  Google Scholar 

  30. Yan L, Combs GFJ (2014) Consumption of a high-fat diet abrogates inhibitory effects of methylseleninic acid on spontaneous metastasis of Lewis lung carcinoma in mice. Carcinogenesis 35:2308–2313

    Article  PubMed  Google Scholar 

  31. Yan L, DeMars LC (2014) Effects of a high-fat diet on spontaneous metastasis of Lewis lung carcinoma in plasminogen activator inhibitor-1 deficient and wild-type mice. PLoS ONE 9:e110869

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mason JK, Chen J, Thompson LU (2010) Flaxseed oil-trastuzumab interaction in breast cancer. Food Chem Toxicol 48:2223–2226

    Article  CAS  PubMed  Google Scholar 

  33. Reeves PG, Nielsen FH, Fahey GCJ (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951

    CAS  PubMed  Google Scholar 

  34. Institute for Laboratory Animal Research (2011) Guide for the care and use of laboratory animals. National Academies Press, Washington, DC

    Google Scholar 

  35. Lepage G, Roy CC (1986) Direct transesterification of all classes of lipids in a one-step reaction. J Lipid Res 27:114–120

    CAS  PubMed  Google Scholar 

  36. Masood A, Stark KD, Salem NJ (2005) A simplified and efficient method for the analysis of fatty acid methyl esters suitable for large clinical studies. J Lipid Res 46:2299–2305

    Article  CAS  PubMed  Google Scholar 

  37. Pajvani UB, Hawkins M, Combs TP, Rajala MW, Doebber T, Berger JP, Wagner JA, Wu M, Knopps A, Xiang AH, Utzschneider KM, Kahn SE, Olefsky JM, Buchanan TA, Scherer PE (2004) Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J Biol Chem 279:12152–12162

    Article  CAS  PubMed  Google Scholar 

  38. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7:941–946

    Article  CAS  PubMed  Google Scholar 

  39. Rossi AS, Lombardo YB, Lacorte JM, Chicco AG, Rouault C, Slama G, Rizkalla SW (2005) Dietary fish oil positively regulates plasma leptin and adiponectin levels in sucrose-fed, insulin-resistant rats. Am J Physiol Regul Integr Comp Physiol 289:R486–R494

    Article  CAS  PubMed  Google Scholar 

  40. Cammisotto PG, Gelinas Y, Deshaies Y, Bukowiecki LJ (2003) Regulation of leptin secretion from white adipocytes by free fatty acids. Am J Physiol Endocrinol Metab 285:E521–E526

    Article  CAS  PubMed  Google Scholar 

  41. Couet C, Delarue J, Ritz P, Antoine JM, Lamisse F (1997) Effect of dietary fish oil on body fat mass and basal fat oxidation in healthy adults. Int J Obes Relat Metab Disord 21:637–643

    Article  CAS  PubMed  Google Scholar 

  42. Raclot T, Groscolas R, Langin D, Ferre P (1997) Site-specific regulation of gene expression by n-3 polyunsaturated fatty acids in rat white adipose tissues. J Lipid Res 38:1963–1972

    CAS  PubMed  Google Scholar 

  43. Belzung F, Raclot T, Groscolas R (1993) Fish oil n-3 fatty acids selectively limit the hypertrophy of abdominal fat depots in growing rats fed high-fat diets. Am J Physiol 264:R1111–R1118

    CAS  PubMed  Google Scholar 

  44. Alessi MC, Bastelica D, Morange P, Berthet B, Leduc I, Verdier M, Geel O, Juhan-Vague I (2000) Plasminogen activator inhibitor 1, transforming growth factor-beta1, and BMI are closely associated in human adipose tissue during morbid obesity. Diabetes 49:1374–1380

    Article  CAS  PubMed  Google Scholar 

  45. Sartipy P, Loskutoff DJ (2003) Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci USA 100:7265–7270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sawdey MS, Loskutoff DJ (1991) Regulation of murine type 1 plasminogen activator inhibitor gene expression in vivo. Tissue specificity and induction by lipopolysaccharide, tumor necrosis factor-alpha, and transforming growth factor-beta. J Clin Invest 88:1346–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Quax PH, van den Hoogen CM, Verheijen JH, Padro T, Zeheb R, Gelehrter TD, van Berkel TJ, Kuiper J, Emeis JJ (1990) Endotoxin induction of plasminogen activator and plasminogen activator inhibitor type 1 mRNA in rat tissues in vivo. J Biol Chem 265:15560–15563

    CAS  PubMed  Google Scholar 

  48. Catta-Preta M, Martins MA, Cunha Brunini TM, Mendes-Ribeiro AC, Mandarim-de-Lacerda CA, Aguila MB (2012) Modulation of cytokines, resistin, and distribution of adipose tissue in C57BL/6 mice by different high-fat diets. Nutrition 28:212–219

    Article  CAS  PubMed  Google Scholar 

  49. Ribot J, Rodriguez AM, Rodriguez E, Palou A (2008) Adiponectin and resistin response in the onset of obesity in male and female rats. Obesity 16:723–730

    Article  CAS  PubMed  Google Scholar 

  50. Way JM, Gorgun CZ, Tong Q, Uysal KT, Brown KK, Harrington WW, Oliver WR Jr, Willson TM, Kliewer SA, Hotamisligil GS (2001) Adipose tissue resistin expression is severely suppressed in obesity and stimulated by peroxisome proliferator-activated receptor gamma agonists. J Biol Chem 276:25651–25653

    Article  CAS  PubMed  Google Scholar 

  51. Monk JM, Hou TY, Turk HF, Weeks B, Wu C, McMurray DN, Chapkin RS (2012) Dietary n-3 polyunsaturated fatty acids (PUFA) decrease obesity-associated Th17 cell-mediated inflammation during colitis. PLoS ONE 7:e49739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hodson L, Skeaff CM, Fielding BA (2008) Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog Lipid Res 47:348–380

    Article  CAS  PubMed  Google Scholar 

  53. Abbott SK, Else PL, Atkins TA, Hulbert AJ (2012) Fatty acid composition of membrane bilayers: importance of diet polyunsaturated fat balance. Biochim Biophys Acta 1818:1309–1317

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the assistance of the following staff of the Grand Forks Human Nutrition Research Center: Lana DeMars and Kay Keehr for technical support, James Lindlauf for preparing experimental diets and vivarium staff for providing high quality animal care. This work was supported by the U.S. Department of Agriculture, ARS, research project 5450-51000-050-00D.

The U.S. Department of Agriculture, ARS, Plains Area, is an equal opportunity/affirmative action employer and all agency services are available without discrimination. Mention of trade names or commercial products in this article is solely for providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Yan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundaram, S., Bukowski, M.R., Lie, WR. et al. High-Fat Diets Containing Different Amounts of n3 and n6 Polyunsaturated Fatty Acids Modulate Inflammatory Cytokine Production in Mice. Lipids 51, 571–582 (2016). https://doi.org/10.1007/s11745-015-4093-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4093-x

Keywords

Navigation