Skip to main content
Log in

Hypercholesterolemia Induced Immune Response and Inflammation on Progression of Atherosclerosis in Apob tm2Sgy Ldlr tm1Her/J Mice

  • Original Article
  • Published:
Lipids

Abstract

The effect of hypercholesterolemia induced immune response and inflammation on progression of atherosclerosis in ApoB tm25gy LDLr tm1Her mice, expressing only ApoB100 and deficient in the low density lipoprotein (LDL) receptor, thus closely resembling human cholesterol transport is not well defined. Atherosclerosis was induced by a high cholesterol diet and its progression was studied at 8, 14 and 20 weeks. Antibody response was determined by ELISA. Lymphocytes in spleen and aortic expression of inflammatory markers were studied by flow cytometry, and immunohistochemistry respectively. A rapid increase in plasma LDL levels in the first 8 weeks was followed by the exponential development of atherosclerosis between 8 and 14 weeks. Progression of the disease was accompanied by an accumulation of macrophages and increased expression of IL17 and IFN-γ in the aorta. Hypercholesterolemia resulted in increased immune response to modified lipids and aortic inflammation, with an expansion of Th17 cells in the spleen. Progression of atherosclerosis showed a positive correlation (r = 0.84, P < 0.001) with Th17 cells and a negative correlation with Treg cells (r = 0.83, P < 0.001). IgM antibodies to Ox-LDL and Th17 cells in spleen showed greatest association with disease development. Our results suggest that anti Ox-LDL IgM antibodies, Th17 cells could be developed as a potential marker to study disease progression and to study the effect of therapeutic regulation of inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Apo B:

Apolipoprotein B

Apo E:

Apolipoprotein E

Con A:

Concanavalin A

EVG:

Elastica van Gieson

GAPDH:

Glyceraldehyde-3 phosphate dehydrogenase

HDL:

High-density lipoprotein

HFD:

High fat diet

HBSS:

Hanks' balanced salt solution

IL-17:

Interleukin-17

IL-10:

Interleukin-10

IFN-γ:

Interferon-γ

LDL:

Low-density lipoprotein

LDL-R:

Low-density lipoprotein receptor

NBF:

Neutral buffered phenol

Ox-LDL:

Oxidized low-density lipoprotein

ORO:

Oil red O

PMA:

Phorbol myristate acetate

RT-PCR:

Real-time polymerase chain reaction

RPMI:

Rosewell Park Memorial Institute

TC:

Total cholesterol

Th1:

T-helper 1

TGF-β:

Transforming growth factor

TNF-α:

Tumor necrosis factor α

References

  1. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695

    Article  CAS  PubMed  Google Scholar 

  2. Hansson GK (2009) Atherosclerosis–an immune disease: The Anitschkov Lecture 2007. Atherosclerosis 202:2–10

    Article  CAS  PubMed  Google Scholar 

  3. Daugherty A, Rateri DL (2005) Development of experimental designs for atherosclerosis studies in mice. Methods 36:129–138

    Article  CAS  PubMed  Google Scholar 

  4. Daugherty A (2002) Mouse models of atherosclerosis. Am J Med Sci 323:3–10

    Article  PubMed  Google Scholar 

  5. Getz GS, Reardon CA (2012) Animal models of atherosclerosis. Arterioscler Thromb Vasc Biol 32:1104–1115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Mukhopadhyay R (2013) Mouse models of atherosclerosis: explaining critical roles of lipid metabolism and inflammation. J Appl Genet 54:185–192

    Article  CAS  PubMed  Google Scholar 

  7. Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J (1993) Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest 92:883–893

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Zhang SH, Reddick RL, Piedrahita JA, Maeda N (1992) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258:468–471

    Article  CAS  PubMed  Google Scholar 

  9. Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R (1994) ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 14:133–140

    Article  CAS  PubMed  Google Scholar 

  10. Linton MF, Farese RV Jr, Chiesa G, Grass DS, Chin P, Hammer RE, Hobbs HH, Young SG (1993) Transgenic mice expressing high plasma concentrations of human apolipoprotein B100 and lipoprotein(a). J Clin Invest 92:3029–3037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Callow MJ, Stoltzfus LJ, Lawn RM, Rubin EM (1994) Expression of human apolipoprotein B and assembly of lipoprotein(a) in transgenic mice. Proc Natl Acad Sci USA 91:2130–2134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Soutar AK, Naoumova RP (2007) Mechanisms of disease: genetic causes of familial hypercholesterolemia. Nat Clin Pract Cardiovasc Med 4:214–225

    Article  CAS  PubMed  Google Scholar 

  13. Powell-Braxton L, Veniant M, Latvala RD, Hirano KI, Won WB, Ross J, Dybdal N, Zlot CH, Young SG, Davidson NO (1998) A mouse model of human familial hypercholesterolemia: markedly elevated low density lipoprotein cholesterol levels and severe atherosclerosis on a low-fat chow diet. Nat Med 4:934–938

    Article  CAS  PubMed  Google Scholar 

  14. Veniant MM, Pierotti V, Newland D, Cham CM, Sanan DA, Walzem RL, Young SG (1997) Susceptibility to atherosclerosis in mice expressing exclusively apolipoprotein B48 or apolipoprotein B100. J Clin Invest 100:180–188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ma Y, Wang W, Zhang J, Lu Y, Wu W, Yan H, Wang Y (2012) Hyperlipidemia and atherosclerotic lesion development in Ldlr-deficient mice on a long-term high-fat diet. PLoS One 7:e35835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Reddick RL, Zhang SH, Maeda N (1994) Atherosclerosis in mice lacking apo E. Evaluation of lesional development and progression. Arterioscler Thromb 14:141–147

    Article  CAS  PubMed  Google Scholar 

  17. Martens GW, Vallerskog T, Kornfeld H (2012) Hypercholesterolemic LDL receptor-deficient mice mount a neutrophilic response to tuberculosis despite the timely expression of protective immunity. J Leukoc Biol 91:849–857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Lichtman AH, Binder CJ, Tsimikas S, Witztum JL (2013) Adaptive immunity in atherogenesis: new insights and therapeutic approaches. J Clin Invest 123:27–36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Andersson J, Libby P, Hansson GK (2010) Adaptive immunity and atherosclerosis. Clin Immunol 134:33–46

    Article  CAS  PubMed  Google Scholar 

  20. Hermansson A, Ketelhuth DF, Strodthoff D, Wurm M, Hansson EM, Nicoletti A, Paulsson-Berne G, Hansson GK (2010) Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis. J Exp Med 207:1081–1093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Lahoute C, Herbin O, Mallat Z, Tedgui A (2011) Adaptive immunity in atherosclerosis: mechanisms and future therapeutic targets. Nat Rev Cardiol 8:348–358

    Article  CAS  PubMed  Google Scholar 

  22. Hansson GK, Hermansson A (2011) The immune system in atherosclerosis. Nat Immunol 12:204–212

    Article  CAS  PubMed  Google Scholar 

  23. Mallat Z, Gojova A, Brun V, Esposito B, Fournier N, Cottrez F, Tedgui A, Groux H (2003) Induction of a regulatory T cell type 1 response reduces the development of atherosclerosis in apolipoprotein E-knockout mice. Circulation 108:1232–1237

    Article  CAS  PubMed  Google Scholar 

  24. Steven Leary WU, Raymond A, Cartner S, Corey D, Grandin T, Greenacre C, McCrackin MA, Meyer R, Miller D, Shearer J,Yanong R, AVMA Guidelines for the Euthanasia of Animals. https://www.avma.org/issues/animal_welfare/euthanasia.pdf

  25. Daugherty A, Whitman SC (2003) Quantification of atherosclerosis in mice. Methods Mol Biol 209:293–309

    PubMed  Google Scholar 

  26. Feng B, Zhang D, Kuriakose G, Devlin CM, Kockx M, Tabas I (2003) Niemann-Pick C heterozygosity confers resistance to lesional necrosis and macrophage apoptosis in murine atherosclerosis. Proc Natl Acad Sci 100:10423–10428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Mundkur L, Mukhopadhyay R, Samson S, Varma M, Kale D, Chen D, Shivaprasad S, Sivanandan H, Soman V, Lu X, Kakkar VV (2013) Mucosal Tolerance to a Combination of ApoB and HSP60 Peptides Controls Plaque Progression and Stabilizes Vulnerable Plaque in Apob(tm2Sgy)Ldlr(tm1Her)/J Mice. PLoS One 8:e58364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Lopes-Virella MF, Koskinen S, Mironova M, Horne D, Klein R, Chassereau C, Enockson C, Virella G (2000) The preparation of copper-oxidized LDL for the measurement of oxidized LDL antibodies by EIA. Atherosclerosis 152:107–115

    Article  CAS  PubMed  Google Scholar 

  29. Dimayuga PC, Zhao X, Yano J, Chyu KY (2006) Changes in immune responses to oxidized LDL epitopes during aging in hypercholesterolemic apoE(−/−) mice. Am J Physiol Regul Integr Comp Physiol 291:R1644–R1650

    Article  CAS  PubMed  Google Scholar 

  30. Lei L, Li H, Yan F, Xiao Y (2013) Hyperlipidemia Impaired Innate Immune Response to Periodontal Pathogen Porphyromonas gingivalis in Apolipoprotein E Knockout Mice. PLoS One 8:e71849

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Martens GW, Arikan MC, Lee J, Ren F, Vallerskog T, Kornfeld H (2008) Hypercholesterolemia impairs immunity to tuberculosis. Infect Immun 76:3464–3472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Robertson AK, Zhou X, Strandvik B, Hansson GK (2004) Severe hypercholesterolaemia leads to strong Th2 responses to an exogenous antigen. Scand J Immunol 59:285–293

    Article  CAS  PubMed  Google Scholar 

  33. Zhou X, Johnston TP, Johansson D, Parini P, Funa K, Svensson J, Hansson GK (2009) Hypercholesterolemia leads to elevated TGF-beta1 activity and T helper 3-dependent autoimmune responses in atherosclerotic mice. Atherosclerosis 204:381–387

    Article  CAS  PubMed  Google Scholar 

  34. Zhou X, Paulsson G, Stemme S, Hansson GK (1998) Hypercholesterolemia is associated with a T helper (Th)1/Th2 switch of the autoimmune response in atherosclerotic apo E-knockout mice. J Clin Invest 101:1717–1725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Hansson GK (2001) Immune mechanisms in atherosclerosis. Arterioscler Thromb Vasc Biol 21:1876–1890

    Article  CAS  PubMed  Google Scholar 

  36. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 320:915–924

    Article  CAS  PubMed  Google Scholar 

  37. Binder CJ, Chang MK, Shaw PX, Miller YI, Hartvigsen K, Dewan A, Witztum JL (2002) Innate and acquired immunity in atherogenesis. Nat Med 8:1218–1226

    Article  CAS  PubMed  Google Scholar 

  38. Hansson GK (2002) Vaccination against atherosclerosis: science or fiction? Circulation 106:1599–1601

    Article  PubMed  Google Scholar 

  39. Stemme S, Faber B, Holm J, Wiklund O, Witztum JL, Hansson GK (1995) T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc Natl Acad Sci USA 92:3893–3897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Gao Q, Jiang Y, Ma T, Zhu F, Gao F, Zhang P, Guo C, Wang Q, Wang X, Ma C, Zhang Y, Chen W, Zhang L (2010) A critical function of Th17 proinflammatory cells in the development of atherosclerotic plaque in mice. J Immunol 185:5820–5827

    Article  CAS  PubMed  Google Scholar 

  41. Koga M, Kai H, Yasukawa H, Yamamoto T, Kawai Y, Kato S, Kusaba K, Kai M, Egashira K, Kataoka Y, Imaizumi T (2007) Inhibition of progression and stabilization of plaques by postnatal interferon-gamma function blocking in ApoE-knockout mice. Circ Res 101:348–356

    Article  CAS  PubMed  Google Scholar 

  42. Methe H, Brunner S, Wiegand D, Nabauer M, Koglin J, Edelman ER (2005) Enhanced T-helper-1 lymphocyte activation patterns in acute coronary syndromes. J Am Coll Cardiol 45:1939–1945

    Article  CAS  PubMed  Google Scholar 

  43. Eid RE, Rao DA, Zhou J, Lo SF, Ranjbaran H, Gallo A, Sokol SI, Pfau S, Pober JS, Tellides G (2009) Interleukin-17 and interferon-gamma are produced concomitantly by human coronary artery-infiltrating T cells and act synergistically on vascular smooth muscle cells. Circulation 119:1424–1432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Cheng X, Yu X, Ding YJ, Fu QQ, Xie JJ, Tang TT, Yao R, Chen Y, Liao YH (2008) The Th17/Treg imbalance in patients with acute coronary syndrome. Clin Immunol 127:89–97

    Article  CAS  PubMed  Google Scholar 

  45. Gao Q, Jiang Y, Ma T, Zhu F, Gao F, Zhang P, Guo C, Wang Q, Wang X, Ma C, Zhang Y, Chen W, Zhang L (2010) A critical function of Th17 proinflammatory cells in the development of atherosclerotic plaque in mice. J Immunol 185:5820–5827

    Article  CAS  PubMed  Google Scholar 

  46. Taleb S, Tedgui A, Mallat Z (2015) IL-17 and Th17 cells in atherosclerosis: subtle and contextual roles. Arterioscler Thromb Vasc Biol 35:258–264

    Article  CAS  PubMed  Google Scholar 

  47. Taleb S, Romain M, Ramkhelawon B, Uyttenhove C, Pasterkamp G, Herbin O, Esposito B, Perez N, Yasukawa H, Van Snick J, Yoshimura A, Tedgui A, Mallat Z (2009) Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J Exp Med 206:2067–2077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Erbel C, Chen L, Bea F, Wangler S, Celik S, Lasitschka F, Wang Y, Bockler D, Katus HA, Dengler TJ (2009) Inhibition of IL-17A attenuates atherosclerotic lesion development in apoE-deficient mice. J Immunol 183:8167–8175

    Article  CAS  PubMed  Google Scholar 

  49. van Dijk RA, Duinisveld AJF, Schaapherder AF, Mulder-Stapel A, Hamming JF, Kuiper J, de Boer OJ, van der Wal AC, Kolodgie FD, Virmani R, Lindeman JHN (2015) A Change in Inflammatory Footprint Precedes Plaque Instability: a systematic evaluation of cellular aspects of the adaptive immune response in human atherosclerosis. J Am Heart Assoc 4

  50. Maganto-Garcia E, Tarrio ML, Grabie N, Bu DX, Lichtman AH (2011) Dynamic changes in regulatory T cells are linked to levels of diet-induced hypercholesterolemia. Circulation 124:185–195

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the trustees of Thrombosis Research Institute, London and Bangalore and the Tata Social Welfare Trust, India (TSWT/IG/SNB/JP/Sdm). The study was supported by Department of Biotechnology, Ministry of Science and Technology, Government of India (BT/01/CDE/08/07) and Garry Weston foundation UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Mundkur.

Ethics declarations

Conflict of interest

None.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, L.N., Ponnusamy, T., Philip, S. et al. Hypercholesterolemia Induced Immune Response and Inflammation on Progression of Atherosclerosis in Apob tm2Sgy Ldlr tm1Her/J Mice. Lipids 50, 785–797 (2015). https://doi.org/10.1007/s11745-015-4046-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4046-4

Keywords

Navigation