Skip to main content
Log in

Docosahexaenoic Acid Supplementation Promotes Erythrocyte Antioxidant Defense and Reduces Protein Nitrosative Damage in Male Athletes

  • Original Article
  • Published:
Lipids

Abstract

The aim of this study was to determine the influence of long-term docosahexaenoic acid (DHA) dietary supplementation on the erythrocyte fatty acid profile and oxidative balance in soccer players after training and acute exercise. Fifteen volunteer male athletes (age 20.0 ± 0.5 years) were randomly assigned to a placebo group that consumed an almond-based beverage (n = 6), or to an experimental group that consumed the same beverage enriched with DHA (n = 9) for 8 weeks. Blood samples were taken in resting conditions at the beginning and after 8 weeks of nutritional intervention and training in resting and in post-exercise conditions. Oxidative damage markers (malonyldialdehyde, carbonyl and nitrotyrosine indexes) and the activity and protein level of antioxidant enzymes (catalase, superoxide dismutase, glutathione reductase and peroxidase) were assessed. The results showed that training increased antioxidant enzyme activities in erythrocytes. The experimental beverage increased DHA from 34.0 ± 3.6 to 43.0 ± 3.6 nmol/109 erythrocytes. DHA supplementation increased the catalytic activity of superoxide dismutase from 1.48 ± 0.40 to 10.5 ± 0.35 pkat/109 erythrocytes, and brought about a reduction in peroxidative damage induced by training or exercise. In conclusion, dietary supplementation with DHA changed the erythrocyte membrane composition, provided antioxidant defense and reduced protein peroxidative damage in the red blood cells of professional athletes after an 8-week training season and acute exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BHA:

Butylated hydroxyanisole

BHT:

Butylated hydroxytoluene

CAT:

Catalase

DNPH:

2,4-Dinitrophenylhydrazine

DHA:

Docosahexaenoic acid

EDTA:

Ethylenediaminetetraacetic acid

EPA:

Eicosapentaenoic acid

FID:

Flame ionization detector

GPx:

Glutathione peroxidase

GRd:

Glutathione reductase

MCH:

Mean corpuscular hemoglobin

MCV:

Mean corpuscular volume

MDA:

Malondialdehyde

MUFA:

Monounsaturated fatty acid(s)

PAGE:

Polyacrylamide gel electrophoresis

PBS:

Phosphate buffered saline

PBMC:

Peripheral blood mononuclear cell

PUFA:

Polyunsaturated fatty acid(s)

ROS:

Reactive oxygen species

SFA:

Saturated fatty acids

SOD:

Superoxide dismutase

TBAR:

Thiobarbituric acid reactive substance

UCP:

Uncoupling protein

References

  1. Gomez-Cabrera MC, Viña J, Ji LL (2009) Interplay of oxidants and antioxidants during exercise: implications for muscle health. Phys Sportsmed 37:116–123

    Article  PubMed  Google Scholar 

  2. Gomez-Cabrera MC, Domenech E, Viña J (2008) Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med 44:126–131

    Article  CAS  PubMed  Google Scholar 

  3. Fisher-Wellman K, Bloomer RJ (2009) Acute exercise and oxidative stress: a 30 year history. Dyn Med 8:1

    Article  PubMed Central  PubMed  Google Scholar 

  4. Fialkow L, Wang Y, Downey GP (2007) Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic Biol Med 42:153–164

    Article  CAS  PubMed  Google Scholar 

  5. Halliwell B (2007) Biochemistry of oxidative stress. Biochem Soc Trans 35:1147–1150

    Article  CAS  PubMed  Google Scholar 

  6. Ferrer MD, Sureda A, Mestre A, Tur JA, Pons A (2010) The double edge of reactive oxygen species as damaging and signaling molecules in HL60 cell culture. Cell Physiol Biochem 25:241–252

    Article  CAS  PubMed  Google Scholar 

  7. Tauler P, Gimeno I, Aguiló A, Guix MP, Pons A (1999) Regulation of erythrocyte antioxidant enzyme activities in athletes during competition and short-term recovery. Pflugers Arch 438:782–787

    Article  CAS  PubMed  Google Scholar 

  8. Sureda A, Tauler P, Aguiló A, Cases N, Fuentespina E, Córdova A, Tur JA, Pons A (2005) Relation between oxidative stress markers and antioxidant endogenous defences during exhaustive exercise. Free Radic Res 39:1317–1324

    Article  CAS  PubMed  Google Scholar 

  9. Faivre-Fiorina B, Caron A, Labrude P, Vigneron C (1998) Erythrocyte, plasma and substitute hemoglobins facing physiological oxidizing and reducing agents. Ann Biol Clin (Paris) 56:545–556

    CAS  Google Scholar 

  10. Tauler P, Aguiló A, Gimeno I, Fuentespina E, Tur JA, Pons A (2003) Influence of vitamin C diet supplementation on endogenous antioxidant defences during exhaustive exercise. Pflugers Arch 446:658–664

    Article  CAS  PubMed  Google Scholar 

  11. Barceló-Coblijn G, Murphy EJ, Othman R, Moghadasian MH, Kashour T, Friel JK (2008) Flaxseed oil and fish-oil capsule consumption alters human red blood cell n-3 fatty acid composition: a multiple-dosing trial comparing 2 sources of n-3 fatty acid. Am J Clin Nutr 88:801–809

    PubMed  Google Scholar 

  12. Egert S, Lindenmeier M, Harnack K, Krome K, Erbersdobler HF, Wahrburg U, Somoza V (2012) Margarines fortified with α-linolenic acid, eicosapentaenoic acid, or docosahexaenoic acid alter the fatty acid composition of erythrocytes but do not affect the antioxidant status of healthy adults. J Nutr 142:1638–1644

    Article  CAS  PubMed  Google Scholar 

  13. Bloomer RJ, Larson DE, Fisher-Wellman KH, Galpin AJ, Schilling BK (2009) Effect of eicosapentaenoic and docosahexaenoic acid on resting and exercise-induced inflammatory and oxidative stress biomarkers: a randomized, placebo controlled, cross-over study. Lipids Health Dis 8:36

    Article  PubMed Central  PubMed  Google Scholar 

  14. Toft AD, Thorn M, Ostrowski K, Asp S, Moller K, Iversen S, Hermann C, Sondergaard SR, Pedersen BK (2000) N-3 polyunsaturated fatty acids do not affect cytokine response to strenuous exercise. J Appl Physiol 89:2401–2406

    CAS  PubMed  Google Scholar 

  15. Tur JA, Bibiloni MM, Sureda A, Pons A (2012) Dietary sources of omega 3 fatty acids: public health risks and benefits. Br J Nutr 107(Suppl 2):S23–S52

    Article  CAS  PubMed  Google Scholar 

  16. Taccone-Gallucci M, Manca-di-Villahermosa S, Battistini L, Stuffler RG, Tedesco M, Maccarrone M (2006) N-3 PUFAs reduce oxidative stress in ESRD patients on maintenance HD by inhibiting 5-lipoxygenase activity. Kidney Int 69:1450–1454

    CAS  PubMed  Google Scholar 

  17. Mori TA, Woodman RJ, Burke V, Puddey IB, Croft KD, Beilin LJ (2003) Effect of eicosapentaenoic acid and docosahexaenoic acid on oxidative stress and inflammatory markers in treated-hypertensive type 2 diabetic subjects. Free Radic Biol Med 35:772–781

    Article  CAS  PubMed  Google Scholar 

  18. McAnulty SR, Nieman DC, Fox-Rabinovich M, Duran V, McAnulty LS, Henson DA, Jin F, Landram MJ (2010) Effect of n-3 fatty acids and antioxidants on oxidative stress after exercise. Med Sci Sports Exerc 42:1704–1711

    Article  CAS  PubMed  Google Scholar 

  19. Capó X, Martorell M, Sureda A, Llompart I, Tur JA, Pons A (2014) Diet supplementation with DHA-enriched food in football players during training season enhances the mitochondrial antioxidant capabilities in blood mononuclear cells. Eur J Nutr

  20. Martorell M, Capó X, Sureda A, Tur JA, Pons A (2014) Effects of docosahexaenoic acid diet supplementation, training, and acute exercise on oxidative balance in neutrophils. Appl Physiol Nutr Metab 39:446–457

    Article  CAS  PubMed  Google Scholar 

  21. Ferrer MD, Tauler P, Sureda A, Pujol P, Drobnic F, Tur JA, Pons A (2009) A soccer match’s ability to enhance lymphocyte capability to produce ROS and induce oxidative damage. Int J Sport Nutr Exerc Metab 19:243–258

    CAS  PubMed  Google Scholar 

  22. Sureda A, Ferrer MD, Tauler P, Maestre I, Aguiló A, Córdova A, Tur JA, Roche E, Pons A (2007) Intense physical activity enhances neutrophil antioxidant enzyme gene expression. Immunocytochemistry evidence for catalase secretion. Free Radic Res 41:874–883

    Article  CAS  PubMed  Google Scholar 

  23. Kew S, Mesa MD, Tricon S, Buckley R, Minihane AM, Yaqoob P (2004) Effects of oils rich in eicosapentaenoic and docosahexaenoic acids on immune cell composition and function in healthy humans. Am J Clin Nutr 79:674–681

    CAS  PubMed  Google Scholar 

  24. Gray P, Gabriel B, Thies F, Gray SR (2012) Fish oil supplementation augments post-exercise immune function in young males. Brain Behav Immun 26:1265–1272

    Article  CAS  PubMed  Google Scholar 

  25. Léger L, Boucher R (1980) An indirect continuous running multistage field test: the Université de Montréal track test. Can J Appl Sport Sci 5:77–84

    PubMed  Google Scholar 

  26. Sureda A, Ferrer MD, Tauler P, Romaguera D, Drobnic F, Pujol P, Tur JA, Pons A (2009) Effects of exercise intensity on lymphocyte H2O2 production and antioxidant defences in soccer players. Br J Sports Med 43:186–190

    Article  CAS  PubMed  Google Scholar 

  27. Boyum A (1964) Separation of White Blood Cells. Nature 204:793–794

    Article  CAS  PubMed  Google Scholar 

  28. Sureda A, Batle JM, Tauler P, Ferrer MD, Tur JA, Pons A (2006) Vitamin C supplementation influences the antioxidant response and nitric oxide handling of erythrocytes and lymphocytes to diving apnea. Eur J Clin Nutr 60:838–846

    Article  CAS  PubMed  Google Scholar 

  29. Ferrer MD, Tauler P, Sureda A, Tur JA, Pons A (2009) Antioxidant regulatory mechanisms in neutrophils and lymphocytes after intense exercise. J Sports Sci 27:49–58

    Article  PubMed  Google Scholar 

  30. Sureda A, Cordova A Ferrer MD, Tauler P, Perez G, Tur JA, Pons A (2009) Effects of l-citrulline oral supplementation on polymorphonuclear neutrophils oxidative burst and nitric oxide production after exercise. Free Radic Res 43:828–835

    Article  CAS  PubMed  Google Scholar 

  31. Ervin RB (2009) Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States, 2003–2006. Natl Health Stat Report:1–7

  32. Carter JELYM (1984) Skinfolds and body composition of Olympic athletes. Med Sport Sci 18:144–182

    Google Scholar 

  33. Tauler P, Ferrer MD, Romaguera D, Sureda A, Aguilo A, Tur J, Pons A (2008) Antioxidant response and oxidative damage induced by a swimming session: influence of gender. J Sports Sci 26:1303–1311

    Article  PubMed  Google Scholar 

  34. MeM Bibiloni, Pich J, Pons A, Tur JA (2013) Body image and eating patterns among adolescents. BMC Public Health 13:1104

    Article  Google Scholar 

  35. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  36. Lladó I, Palou A, Pons A (1993) Combined enzymic and chromatographic techniques to determine specific radioactivity in free and triglyceride fatty acid plasma fractions. J Chromatogr 619:21–28

    Article  PubMed  Google Scholar 

  37. Gérard-Monnier D, Erdelmeier I, Régnard K, Moze-Henry N, Yadan JC, Chaudière J (1998) Reactions of 1-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation. Chem Res Toxicol 11:1176–1183

    Article  PubMed  Google Scholar 

  38. Erdelmeier I, Gérard-Monnier D, Yadan JC, Chaudière J (1998) Reactions of N-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Mechanistic aspects of the colorimetric assay of lipid peroxidation. Chem Res Toxicol 11:1184–1194

    Article  CAS  PubMed  Google Scholar 

  39. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  40. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  41. Bermeyer J (1983) Methods of enzymatic analysis. Enzymes 1: oxidoreductases, transferases, 3rd edn, vol III. Verlag Chemie, Wiley, New York, pp 280

  42. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    CAS  PubMed  Google Scholar 

  43. Goldberg DM SR(1984) Glutathione reductase. In: Methods in enzymatic analysis. pp 258–265 (258–265)

  44. Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  CAS  PubMed  Google Scholar 

  45. Ortega RM LA, Requejo AM et al (2004) La composición de los alimentos. Herramienta básica para la valoración nutricional

  46. Tur JA, Romaguera D, Pons A (2005) Does the diet of the Balearic population, a Mediterranean-type diet, ensure compliance with nutritional objectives for the Spanish population? Public Health Nutr 8:275–283

    Article  PubMed  Google Scholar 

  47. Filaire E, Massart A, Portier H, Rouveix M, Rosado F, Bage AS, Gobert M, Durand D (2010) Effect of 6 Weeks of n-3 fatty-acid supplementation on oxidative stress in Judo athletes. Int J Sport Nutr Exerc Metab 20:496–506

    CAS  PubMed  Google Scholar 

  48. Tepsic J, Vucic V, Arsic A, Blazencic-Mladenovic V, Mazic S, Glibetic M (2009) Plasma and erythrocyte phospholipid fatty acid profile in professional basketball and football players. Eur J Appl Physiol 107:359–365

    Article  CAS  PubMed  Google Scholar 

  49. Helge JW, Ayre KJ, Hulbert AJ, Kiens B, Storlien LH (1999) Regular exercise modulates muscle membrane phospholipid profile in rats. J Nutr 129:1636–1642

    CAS  PubMed  Google Scholar 

  50. Kamada T, Tokuda S, Aozaki S, Otsuji S (1993) Higher levels of erythrocyte membrane fluidity in sprinters and long-distance runners. J Appl Physiol 74:354–358

    CAS  PubMed  Google Scholar 

  51. Teległów A, Dabrowski Z, Marchewka A, Tabarowski Z, Bilski J, Jaśkiewicz J, Gdula-Argasińska J, Głodzik J, Lizak D, Kepińska M (2011) Effects of cold water swimming on blood rheological properties and composition of fatty acids in erythrocyte membranes of untrained older rats. Folia Biol (Krakow) 59:203–209

    Article  Google Scholar 

  52. Teległów A, Bilski J, Dąbrowski Z, Marchewka A, Jaśkiewicz J, Gdula-Argasińska J, Głodzik J, Tabarowski Z, Lizak D (2012) The effects of exercise in water at 4 °C and 25 °C on the rheological properties of blood and the composition of fatty acids in the erythrocyte membranes of laboratory rats. Clin Hemorheol Microcirc 51:139–148

    PubMed  Google Scholar 

  53. Mickleborough TD (2013) Omega-3 polyunsaturated fatty acids in physical performance optimization. Int J Sport Nutr Exerc Metab 23:83–96

    CAS  PubMed  Google Scholar 

  54. Figueira TR, Barros MH, Camargo AA, Castilho RF, Ferreira JC, Kowaltowski AJ, Sluse FE, Souza-Pinto NC, Vercesi AE (2013) Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health. Antioxid Redox Signal 18:2029–2074

    Article  CAS  PubMed  Google Scholar 

  55. Huffman DM, Altena TS, Mawhinney TP, Thomas TR (2004) Effect of n-3 fatty acids on free tryptophan and exercise fatigue. Eur J Appl Physiol 92:584–591

    Article  CAS  PubMed  Google Scholar 

  56. Brilla LR, Landerholm TE (1990) Effect of fish oil supplementation and exercise on serum lipids and aerobic fitness. J Sports Med Phys Fitness 30:173–180

    CAS  PubMed  Google Scholar 

  57. Carrera-Quintanar L, Funes L, Viudes E, Tur J, Micol V, Roche E, Pons A (2012) Antioxidant effect of lemon verbena extracts in lymphocytes of university students performing aerobic training program. Scand J Med Sci Sports 22:454–461

    Article  CAS  PubMed  Google Scholar 

  58. Metin G, Atukeren P, Alturfan AA, Gulyasar T, Kaya M, Gumustas MK (2003) Lipid peroxidation, erythrocyte superoxide-dismutase activity and trace metals in young male footballers. Yonsei Med J 44:979–986

    Article  CAS  PubMed  Google Scholar 

  59. Marin DP, Bolin AP, Campoio TR, Guerra BA, Otton R (2013) Oxidative stress and antioxidant status response of handball athletes: implications for sport training monitoring. Int Immunopharmacol 17:462–470

    Article  CAS  PubMed  Google Scholar 

  60. Muñoz Marín D, Olcina G, Timón R, Robles MC, Caballero MJ, Maynar M (2010) Effect of different exercise intensities on oxidative stress markers and antioxidant response in trained cyclists. J Sports Med Phys Fitness 50:93–98

    PubMed  Google Scholar 

  61. Méndez L, Pazos M, Gallardo JM, Torres JL, Pérez-Jiménez J, Nogués R, Romeu M, Medina I(2012) Reduced protein oxidation in wistar rats supplemented with marine OMEGA-3 pufa. Free Radic Biol Med

  62. Rao RS, Møller IM (2011) Pattern of occurrence and occupancy of carbonylation sites in proteins. Proteomics 11:4166–4173

    Article  CAS  PubMed  Google Scholar 

  63. Pietraforte D, Salzano AM, Marino G, Minetti M (2003) Peroxynitrite-dependent modifications of tyrosine residues in hemoglobin. Formation of tyrosyl radical(s) and 3-nitrotyrosine. Amino Acids 25:341–350

    Article  CAS  PubMed  Google Scholar 

  64. Hubner-Wozniak E, Panczenko-Kresowka B, Lerczak K, Psnik J (1994) Effects of graded treadmill exercise on the activity of blood antioxidant enzymes, lipid peroxides and nonenzymatic anti-oxidants in long-distance skiers. 11:217–226

  65. Hollander J, Bejma J, Ookawara T, Ohno H, Ji LL (2000) Superoxide dismutase gene expression in skeletal muscle: fiber-specific effect of age. Mech Ageing Dev 116:33–45

    Article  CAS  PubMed  Google Scholar 

  66. Sailaja YR, Baskar R, Saralakumari D (2003) The antioxidant status during maturation of reticulocytes to erythrocytes in type 2 diabetics. Free Radic Biol Med 35:133–139

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Acción Estratégica en Salud del Ministerio de Ciencia e Innovación DPS2008-07033-C03-03, Program of Promotion of Biomedical Research and Health Sciences, Projects 11/01791, Red Predimed-RETIC RD06/0045/1004, CIBERobn CB12/03/30038 and Balearic Island Government (35/2011 and 23/2012) and FEDER funds. We hereby acknowledge the PhD grant provided by the University of the Balearic Islands.

We would like to thank the soccer players involved in the study for their committed participation. The excellent medical assistance of Bartomeu Munar and RCD Mallorca is appreciated.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pons.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martorell, M., Capó, X., Bibiloni, M.M. et al. Docosahexaenoic Acid Supplementation Promotes Erythrocyte Antioxidant Defense and Reduces Protein Nitrosative Damage in Male Athletes. Lipids 50, 131–148 (2015). https://doi.org/10.1007/s11745-014-3976-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-014-3976-6

Keywords

Navigation