Skip to main content
Log in

Treatment of Low HDL-C Subjects with the CETP Modulator Dalcetrapib Increases Plasma Campesterol Only in Those Without ABCA1 and/or ApoA1 Mutations

  • Communication
  • Published:
Lipids

Abstract

We investigated the effect of dalcetrapib treatment on phytosterol levels in patients with familial combined hyperlipidemia (FCH) or familial hypoalphalipoproteinemia (FHA) due to mutations in apolipoprotein A1 (ApoA1) or ATP-binding cassette transporter A1 (ABCA1). Patients (n = 40) with FCH or FHA received dalcetrapib 600 mg or placebo in this 4-week, double-blind, crossover study. Lipids, apolipoproteins, cholesteryl ester transfer protein (CETP) activity and mass, and phytosterols were assessed. Dalcetrapib increased high-density lipoprotein cholesterol (HDL-C) and ApoA1 levels to a similar extent in FHA (+22.8, +13.9 %) and FCH (+18.4, +12.1 %), both p < 0.001 vs. placebo. Changes in CETP activity and mass were comparable for FHA (−31.5, +120.9 %) and FCH (−26.6, +111.9 %), both p < 0.0001 vs. placebo. Campesterol and lathosterol were unchanged in FHA (+3.8, +3.0 %), but only campesterol was markedly increased in FCH (+25.0 %, p < 0.0001 vs. placebo). Campesterol increased with dalcetrapib treatment in FCH but not in FHA, despite comparable HDL-C and ApoA1 increases, suggesting that ApoA1 and/or ABCA1 is essential for HDL lipidation by enterocytes in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Abbreviations

ABC:

ATP-binding cassette transporter

Apo:

Apolipoprotein

CETP:

Cholesteryl ester transfer protein

FCH:

Familial combined hyperlipidemia

FHA:

Familial hypoalphalipoproteinemia

HDL:

High-density lipoprotein

HDL-C:

HDL cholesterol

LDL:

Low-density lipoprotein

LDL-C:

LDL cholesterol

MTP:

Microsomal triglyceride transfer

SRB1:

Scavenger receptor class B member 1

References

  1. Fisher EA, Feig JE, Hewing B, Hazen SL, Smith JD (2012) High-density lipoprotein function, dysfunction, and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 32:2813–2820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Kontush A (2014) HDL-mediated mechanisms of protection in cardiovascular disease. Cardiovasc Res 103:341–349

    Article  CAS  PubMed  Google Scholar 

  3. Brunham LR, Kruit JK, Iqbal J, Fievet C, Timmins JM, Pape TD, Coburn BA, Bissada N, Staels B, Groen AK, Hussain MM, Parks JS, Kuipers F, Hayden MR (2006) Intestinal ABCA1 directly contributes to HDL biogenesis in vivo. J Clin Investig 116:1052–1062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Brunham LR, Kruit JK, Pape TD, Parks JS, Kuipers F, Hayden MR (2006) Tissue-specific induction of intestinal ABCA1 expression with a liver X receptor agonist raises plasma HDL cholesterol levels. Circ Res 99:672–674

    Article  CAS  PubMed  Google Scholar 

  5. Niesor EJ, Magg C, Ogawa N, Okamoto H, von der Mark E, Matile H, Schmid G, Clerc RG, Chaput E, Blum-Kaelin D, Huber W, Thoma R, Pflieger P, Kakutani M, Takahashi D, Dernick G, Maugeais C (2010) Modulating cholesteryl ester transfer protein activity maintains efficient pre-beta-HDL formation and increases reverse cholesterol transport. J Lipid Res 51:3443–3454

    Article  PubMed Central  PubMed  Google Scholar 

  6. Maugeais C, Perez A, von der Mark E, Magg C, Pflieger P, Niesor EJ (2013) Evidence for a role of CETP in HDL remodeling and cholesterol efflux: role of cysteine 13 of CETP. Biochim Biophys Acta 1831:1644–1650

    Article  CAS  PubMed  Google Scholar 

  7. Niesor EJ, Chaput E, Staempfli A, Blum D, Derks M, Kallend D (2011) Effect of dalcetrapib, a CETP modulator, on non-cholesterol sterol markers of cholesterol homeostasis in healthy subjects. Atherosclerosis 219:761–767

    Article  CAS  PubMed  Google Scholar 

  8. Nunes VS, Leanca CC, Panzoldo NB, Parra E, Cazita PM, Nakandakare ER, de Faria EC, Quintao EC (2011) HDL-C concentration is related to markers of absorption and of cholesterol synthesis: study in subjects with low vs. high HDL-C. Clin Chim Acta 412:176–180

    Article  CAS  PubMed  Google Scholar 

  9. Sutherland WH, Robertson MC, Williamson SA, Nye ER (1991) Plasma noncholesterol sterols in male distance runners and sedentary men. Eur J Appl Physiol Occup Physiol 63:119–123

    Article  CAS  PubMed  Google Scholar 

  10. Leichtle AB, Helmschrodt C, Ceglarek U, Shai I, Henkin Y, Schwarzfuchs D, Golan R, Gepner Y, Stampfer MJ, Bluher M, Stumvoll M, Thiery J, Fiedler GM (2011) Effects of a 2-y dietary weight-loss intervention on cholesterol metabolism in moderately obese men. Am J Clin Nutr 94:1189–1195

    Article  CAS  PubMed  Google Scholar 

  11. Bisoendial RJ, Hovingh GK, El HK, Levels JH, Tsimikas S, Pu K, Zwinderman AE, Kuivenhoven JA, Kastelein JJ, Stroes ES (2005) Consequences of cholesteryl ester transfer protein inhibition in patients with familial hypoalphalipoproteinemia. Arterioscler Thromb Vasc Biol 25:e133–e134

    Article  CAS  PubMed  Google Scholar 

  12. National Institutes of Health (2002) Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report. NIH, Bethesda

  13. Harchaoui KE, Franssen R, Hovingh GK, Bisoendial RJ, Stellaard F, Kuipers F, Kastelein JJ, Kuivenhoven JA, Stroes ES, Groen AK (2009) Reduced fecal sterol excretion in subjects with familial hypoalphalipoproteinemia. Atherosclerosis 207:614–616

    Article  PubMed  Google Scholar 

  14. Fayad ZA, Mani V, Woodward M, Kallend D, Abt M, Burgess T, Fuster V, Ballantyne CM, Stein EA, Tardif JC, Rudd JH, Farkouh ME, Tawakol A (2011) Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet 378:1547–1559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ballantyne CM, Miller M, Niesor EJ, Burgess T, Kallend D, Stein EA (2012) Effect of dalcetrapib plus pravastatin on lipoprotein metabolism and high-density lipoprotein composition and function in dyslipidemic patients: results of a phase IIb dose-ranging study. Am Heart J 163:515–521

    Article  CAS  PubMed  Google Scholar 

  16. Luscher TF, Taddei S, Kaski JC, Jukema JW, Kallend D, Munzel T, Kastelein JJ, Deanfield JE (2012) Vascular effects and safety of dalcetrapib in patients with or at risk of coronary heart disease: the dal-VESSEL randomized clinical trial. Eur Heart J 33:857–865

    Article  PubMed Central  PubMed  Google Scholar 

  17. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, Chaitman BR, Holme IM, Kallend D, Leiter LA, Leitersdorf E, McMurray JJ, Mundl H, Nicholls SJ, Shah PK, Tardif JC, Wright RS (2012) Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med 367:2089–2099

    Article  CAS  PubMed  Google Scholar 

  18. Ray KK, Ditmarsch M, Kallend D, Niesor EJ, Suchankova G, Upmanyu R, Anzures-Cabrera J, Lehnert V, Pauly-Evers M, Holme I, Stasek J, van Hessen MW, Jones P (2014) The effect of cholesteryl ester transfer protein inhibition on lipids, lipoproteins, and markers of HDL function after an acute coronary syndrome: the dal-ACUTE randomized trial. Eur Heart J 35:1792–1800

    Article  CAS  PubMed  Google Scholar 

  19. Lupattelli G, Siepi D, De VS, Roscini AR, Crisanti F, Covelli D, Pirro M, Mannarino E (2012) Cholesterol metabolism differs after statin therapy according to the type of hyperlipemia. Life Sci 90:846–850

    Article  CAS  PubMed  Google Scholar 

  20. Yamaguchi S, Zhang B, Tomonaga T, Seino U, Kanagawa A, Segawa M, Nagasaka H, Suzuki A, Miida T, Yamada S, Sasaguri S, Doi T, Saku K, Okazaki M, Tochino Y, Hirano K-I (2014) Selective evaluation of high density lipoprotein from mouse small intestines by an in situ perfusion technique. J Lipid Res 55:905–918

    Article  CAS  PubMed  Google Scholar 

  21. Iqbal J, Parks JS, Hussain MM (2013) Lipid absorption defects in intestine-specific microsomal triglyceride transfer protein and ATP-binding cassette transporter A1-deficient mice. J Biol Chem 288:30432–30444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Robins SJ, Fasulo JM (1997) High density lipoproteins, but not other lipoproteins, provide a vehicle for sterol transport to bile. J Clin Invest 99:380–384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Gylling H, Hallikainen M, Kolehmainen M, Toppinen L, Pihlajamaki J, Mykkanen H, Agren JJ, Rauramaa R, Laakso M, Miettinen TA (2007) Cholesterol synthesis prevails over absorption in metabolic syndrome. Transl Res 149:310–316

    Article  CAS  PubMed  Google Scholar 

  24. Simonen P, Gylling H, Howard AN, Miettinen TA (2000) Introducing a new component of the metabolic syndrome: low cholesterol absorption. Am J Clin Nutr 72:82–88

    CAS  PubMed  Google Scholar 

  25. Kruit JK et al (2006) Emerging roles of the intestine in control of cholesterol metabolism. World J Gastroenterol 12:6429–6439

Download references

Acknowledgments

This study was funded by F. Hoffmann-La Roche Ltd. Funding for the study and analysis was provided by Japan Tobacco/Akros and F. Hoffmann-La Roche Ltd. Editorial assistance was provided by Prime Healthcare during the preparation of this report and funded by F Hoffmann-La Roche Ltd. We thank the participants of this study.

Conflict of interest

Eric J. Niesor and Darren Bentley are employees of F. Hoffmann-La Roche Ltd. David Kallend was an employee of F. Hoffmann-La Roche Ltd at the time the study was performed. Erik Stroes has received (non-significant) speaker fees from AstraZeneca, Merck, Amgen and Novartis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Niesor.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niesor, E.J., Kallend, D., Bentley, D. et al. Treatment of Low HDL-C Subjects with the CETP Modulator Dalcetrapib Increases Plasma Campesterol Only in Those Without ABCA1 and/or ApoA1 Mutations. Lipids 49, 1245–1249 (2014). https://doi.org/10.1007/s11745-014-3956-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-014-3956-x

Keywords

Navigation