Skip to main content
Log in

Distinctive Lipid Composition of the Copepod Limnocalanus macrurus with a High Abundance of Polyunsaturated Fatty Acids

  • Original Article
  • Published:
Lipids

Abstract

We studied the copepod Limnocalanus macrurus for seasonal variation in the composition of fatty acids, wax esters and sterols in large boreal lakes, where it occurs as a glacial-relict. Vast wax ester reserves of Limnocalanus were accumulated in a period of only two months, and comprised mono- and polyunsaturated fatty acids (PUFA) and saturated fatty alcohols. In winter, the mobilization of wax esters was selective, and the proportion of long-chain polyunsaturated wax esters declined first. PUFA accounted for >50 % of all fatty acids throughout the year reaching up to ca. 65 % during late summer and fall. Long-chain PUFA 20:5n-3 and 22:6n-3 together comprised 17–40 % of all fatty acids. The rarely reported C24 and C26 very-long-chain PUFA (VLC-PUFA) comprised 6.2 ± 3.4 % of all fatty acids in August and 2.1 ± 1.7 % in September. The VLC-PUFA are presumably synthesized by Limnocalanus from shorter chain-length precursors because they were not found in the potential food sources. We hypothesize that these VLC-PUFA help Limnocalanus to maximize lipid reserves when food is abundant. Sterol content of Limnocalanus, consisting ca. 90 % of cholesterol, did not show great seasonal variation. As a lipid-rich copepod with high abundance of PUFA, Limnocalanus is excellent quality food for fish. The VLC-PUFA were also detected in planktivorous fish, suggesting that these compounds can be used as a trophic marker indicating feeding on Limnocalanus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MUFA:

Monounsaturated fatty acid(s)

PUFA:

Polyunsaturated fatty acid(s)

TMTD:

4,8,12-Trimethyltridecanoic acid

SFA:

Saturated fatty acid(s)

VLC-PUFA:

Very-long-chain polyunsaturated fatty acid(s)

References

  1. Hutchinson GE (1967) A treatise on limnology. Introduction to lake biology and the limnoplankton, vol 2. Wiley, New York

  2. Segerstråle SG (1976) Immigration of glacial relicts into northern Europe. Boreas 5:1–7

    Article  Google Scholar 

  3. Kane DD, Gannon JE, Culver DA (2004) The status of Limnocalanus macrurus (Copepoda: calanoida: Centropagidae) in Lake Erie. J Great Lakes Res 30:22–30

    Article  Google Scholar 

  4. Warren GJ (1983) Predation by Limnocalanus as potentially major source of winter naupliar mortality in Lake Michigan. J Great Lakes Res 9:389–395

    Article  Google Scholar 

  5. Peters J, Tuschling K, Brandt A (2004) Zooplankton in the arctic Laptev Sea—feeding ecology as indicated by fatty acid composition. J Plankton Res 26:227–234

    Article  CAS  Google Scholar 

  6. Dahlgren K, Olsen BR, Troedsson C, Båmstedt U (2012) Seasonal variation in wax ester concentration and gut content in a Baltic Sea copepod [Limnocalanus macrurus (Sars 1863)]. J Plankton Res 34:286–297

    Article  Google Scholar 

  7. Vanderploeg HA, Cavaletto JF, Liebig JR, Gardner WS (1998) Limnocalanus macrurus (Copepoda: Calanoida) retains a marine arctic lipid and life cycle strategy in Lake Michigan. J Plankton Res 20:1581–1597

    Article  CAS  Google Scholar 

  8. Lee RF, Hagen W, Kattner G (2006) Lipid storage in marine zooplankton. Mar Ecol Prog Ser 307:273–306

    Article  CAS  Google Scholar 

  9. van der Meeren T, Olsen RE, Hamre K, Fyhn HJ (2008) Biochemical composition of copepods for evaluation of feed quality in production of juvenile marine fish. Aquaculture 274:375–397

    Article  Google Scholar 

  10. Cavaletto JF, Vanderploeg HA, Gardner WS (1989) Wax esters in two species of freshwater zooplankton. Limnol Oceanogr 34:785–789

    Article  CAS  Google Scholar 

  11. Brett MT, Müller-Navarra DC, Ballantyne AP, Ravet JL, Goldman CR (2006) Daphnia fatty acid composition reflects that of their diet. Limnol Oceanogr 51:2428–2437

    Article  CAS  Google Scholar 

  12. Burns CW, Brett MT, Schallenberg M (2011) A comparison of the trophic transfer of fatty acids in freshwater plankton by cladocerans and calanoid copepods. Freshw Biol 56:889–903

    Article  Google Scholar 

  13. Dalsgaard J, St. John M, Kattner G, Müller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46:225–340

    Article  PubMed  Google Scholar 

  14. Taipale S, Strandberg U, Peltomaa E, Galloway AWE, Ojala A, Brett MT (2013) Fatty acid composition as biomarkers of freshwater microalgae: analysis of 37 strains of microalgae in 22 genera and in seven classes. Aquat Microb Ecol 71:165–178

    Article  Google Scholar 

  15. Hirche HJ, Fetzer I, Graeve M, Kattner G (2003) Limnocalanus macrurus in the Kara Sea (Arctic Ocean): an opportunistic copepod as evident from distribution and lipid patterns. Polar Biol 26:720–726

    Article  Google Scholar 

  16. Graeve M, Albers C, Kattner G (2005) Assimilation and biosynthesis of lipids in Arctic Calanus species based on feeding experiments with a 13C labelled diatom. J Exp Mar Biol Ecol 317:109–125

    Article  CAS  Google Scholar 

  17. Peters J, Renz J, van Beusekom J, Boersma M, Hagen W (2006) Trophodynamics and seasonal cycle of the copepod Pseudocalanus acuspes in the central Baltic Sea (Bornholm basin): evidence from lipid composition. Mar Biol 149:1417–1429

    Article  CAS  Google Scholar 

  18. Brett MT, Müller-Navarra DC (1997) The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshw Biol 38:483–499

    Article  CAS  Google Scholar 

  19. Sargent JR, Bell G, McEvoy L, Tocher D, Estevez A (1999) Recent developments in the essential fatty acid nutrition of fish. Aquaculture 177:191–199

    Article  CAS  Google Scholar 

  20. Stanley DW (2000) Eicosanoids in invertebrate signal transduction systems. Princeton University Press

  21. Stillwell W, Wassall SR (2003) Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem Phys Lipids 126:1–27

    Article  CAS  PubMed  Google Scholar 

  22. Nanton DA, Castell JD (1999) The effects of temperature and dietary fatty acids on the fatty acid composition harpacticoid copepods, for use as a live food for marine fish larvae. Aquaculture 175:167–181

    Article  CAS  Google Scholar 

  23. Bell MV, Dick JR, Anderson TR, Pond DW (2007) Application of liposome and stable isotope tracer techniques to study polyunsaturated fatty acid biosynthesis in marine zooplankton. J Plankton Res 29:417–422

    Article  CAS  Google Scholar 

  24. Koussoroplis AM, Nussbaumer J, Arts MT, Guschina IA, Kainz MJ (2014) Famine and feast in a common freshwater calanoid: effects of diet and temperature on fatty acid dynamics of Eudiaptomus gracilis. Limnol Oceanogr 59:947–958

    Article  CAS  Google Scholar 

  25. Agaba MK, Tocher DR, Zheng X, Dickson CA, Dick JR, Teale AJ (2005) Cloning and functional characterisation of polyunsaturated fatty acid elongases of marine and freshwater teleost fish. Comp Biochem Physiol Part B:Biochem Mol Biol 142:342–352

    Article  Google Scholar 

  26. Řezanka T (1989) Very-long-chain fatty acids from the animal and plant kingdoms. Prog Lipid Res 28:147–187

    Article  PubMed  Google Scholar 

  27. Käkelä R, Ackman RG, Hyvärinen H (1995) Very long chain polyunsaturated fatty acids in the blubber of ringed seals (Phoca hispida sp.) from Lake Saimaa, Lake Ladoga, the Baltic Sea, and Spitsbergen. Lipids 30:725–731

    Article  PubMed  Google Scholar 

  28. Mansour MP, Volkman JK, Holdsworth DG, Jackson AE, Blackburn SI (1999) Very-long-chain (C28) highly unsaturated fatty acids in marine dinoflagellates. Phytochemistry 50:541–548

    Article  CAS  Google Scholar 

  29. Linko RR, Karinkanta H (1970) Fatty acids of long chain length in Baltic herring lipids. J Am Oil Chem Soc 47:42–46

    Article  CAS  Google Scholar 

  30. Řezanka T, Dembitsky VM (1999) Very long chain polyunsaturated fatty acids in Crustacea of the order Bathynellacea. Biochem Syst Ecol 27:551–558

    Article  Google Scholar 

  31. Subramoniam T (2000) Crustacean ecdysteroids in reproduction and embryogenesis. Comp Biochem Physiol Part C Toxicol Pharmacol 125:135–156

    CAS  Google Scholar 

  32. Goad LJ (1981) Sterol biosynthesis and metabolism in marine invertebrates. Pure Appl Chem 51:837–852

    Google Scholar 

  33. Mühlebach A, Albers C, Kattner G (1999) Differences in the sterol composition of dominant Antarctic zooplankton. Lipids 34:45–51

    Article  PubMed  Google Scholar 

  34. Urbanová K, Vrkoslav V, Valterová I, Háková M, Cvacka J (2012) Structural characterization of wax esters by electron ionization mass spectrometry. J Lipid Res 53:204–213

    Article  PubMed Central  PubMed  Google Scholar 

  35. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E Ltd

  36. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E Ltd

  37. Galloway AWE, Lowe AT, Sosik EA, Yeung JS, Duggins DO (2013) Fatty acid and stable isotope biomarkers suggest microbe-induced differences in benthic food webs between depths. Limnol Oceanogr 58:1452–1462

    Google Scholar 

  38. Van Hove P, Swadling KM, Gibson JAE, Belzile C, Warwick FV (2001) Farthest north lake and fjord populations of calanoid copepods Limnocalanus macrurus and Drepanopus bungei in the Canadian high Arctic. Polar Biol 24:303–307

    Article  Google Scholar 

  39. Rontani JF, Volkman JK (2003) Phytol degradation products as biogeochemical tracers in aquatic environments. Org Geochem 34:1–35

    Article  CAS  Google Scholar 

  40. Le Borgne F, Demarquoy J (2012) Interaction between peroxisomes and mitochondria in fatty acid metabolism. Open J Mol Integr Physiol 2:27–33

    Article  Google Scholar 

  41. Lee RF, Nevenzel JC, Paffenhöfer GA (1970) Wax esters in marine copepods. Science 167:1510–1511

    Article  CAS  PubMed  Google Scholar 

  42. Martin S, Parton RG (2006) Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Bio 7:373–378

    Article  CAS  Google Scholar 

  43. Pond DW, Tarling GA (2011) Phase transitions of wax esters adjust buoyancy in diapausing Calanoides acutus. Limnol Oceanogr 56:1310–1318

    Article  CAS  Google Scholar 

  44. Visser AW, Jónasdóttir SH (1999) Lipids, buoyancy and the seasonal vertical migration of Calanus finmarchicus. Fish Oceanogr 8:100–106

    Article  Google Scholar 

  45. Sandström O (1982) The plankton fauna in the Gulf of Bothnia. In Müller K (ed) Coastal research in the Gulf of Bothnia, Monog Biol 45. W Junk Publ

  46. Rahkola M, Avinski V, Holopainen AL, Jurvelius J, Karjalainen J, Viljanen M (1999) Interacting in the dark: a study of the diel vertical migrations of pelagic plankton and fish in Lake Ladoga. Boreal Environ Res 4:245–255

    Google Scholar 

  47. Ohvo-Rekilä H, Ramstedt B, Leppimäki P, Slotte JP (2002) Cholesterol interactions with phospholipids in membranes. Prog Lipid Res 41:66–97

    Article  PubMed  Google Scholar 

  48. Lee RF, Nevenzel JC, Paffenhöfer GA, Benson AA (1970) The metabolism of wax esters and other lipids by the marine copepod, Calanus helgolandicus. J Lipid Res 11:237–240

    CAS  PubMed  Google Scholar 

  49. Allard B, Danger M, Ten-Hage L, Lacroix G (2011) Influence of food web structure on the biochemical composition of seston, zooplankton and recently deposited sediment in experimental freshwater mesocosms. Aquat Sci 73:113–126

    Article  CAS  Google Scholar 

  50. Hassett RP (2004) Supplementation of a diatom diet with cholesterol can enhance copepod egg-production rates. Limnol Oceanogr 49:488–494

    Article  CAS  Google Scholar 

  51. Persson J, Vrede T (2006) Polyunsaturated fatty acids in zooplankton: variation due to taxonomy and trophic position. Freshw Biol 51:887–900

    Article  CAS  Google Scholar 

  52. Ravet JL, Brett MT, Arhonditsis GB (2010) The effects of seston lipids on zooplankton fatty acid composition in lake Washington. Ecology 91:180–190

    Article  PubMed  Google Scholar 

  53. Lau DCP, Vrede T, Pickova J, Goedkoop W (2012) Fatty acid composition of consumers in boreal lakes—variation across species, space and time. Freshw Biol 57:24–38

    Article  CAS  Google Scholar 

  54. Kattner G, Graeve M, Hagen W (1994) Ontogenetic and seasonal changes in lipid and fatty acid/alcohol compositions of the dominant Antarctic copepods Calanus propinquus, Calanoides acutus and Rhincalanus gigas. Mar Biol 118:637–644

    Article  CAS  Google Scholar 

  55. Kattner G, Albers C, Graeve M, Schnack-Schiel SB (2003) Fatty acid and alcohol composition of the small polar copepods, Oithona and Oncaea: indication on feeding modes. Polar Biol 26:666–671

    Article  Google Scholar 

  56. Farkas T, Herodek S (1964) The effect of environmental temperature on the fatty acid composition of crustacean plankton. J Lipid Res 5:369–373

    CAS  PubMed  Google Scholar 

  57. Albers CS, Kattner G, Hagen W (1996) The compositions of wax esters, triacylglycerols and phospholipids in Arctic and Antarctic copepods: evidence of energetic adaptations. Mar Chem 55:347–358

    Article  CAS  Google Scholar 

  58. Sprecher H (2000) Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim Biophys Acta: Mol Cell Biol Lipids 1486:219–231

    Article  CAS  Google Scholar 

  59. Metz JG, Roessler P, Facciotti D, Levering C, Dittrich F, Lassner M, Valentine R, Lardizabal K, Domergue F, Yamada A, Yazawa K, Knauf V, Browse J (2001) Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290–293

    Article  CAS  PubMed  Google Scholar 

  60. Huggins AK, Munday KA (1968) Crustacean metabolism. In O Lowenstein (ed) Advances in comparative physiology and biochemistry, vol 3. Academic Press, New York

  61. Dahlgren K, Andersson A, Larsson U, Hajdu S, Båmstedt U (2010) Planktonic production and carbon transfer efficiency along a north–south gradient in the Baltic Sea. Mar Ecol Prog Ser 409:77–94

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Academy of Finland grants to Paula Kankaala (139786) and to Sami Taipale (251665). The help of Kari Ratilainen and the crew of R/V Muikku during the field sampling is greatly appreciated. We would also like to thank Dr. Tarja Katajisto (Finnish Environment Institute) and the crew of R/V Aranda for providing the Baltic Sea samples. We thank Aaron Galloway and the two anonymous reviewers for the constructive comments that greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minna Hiltunen.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiltunen, M., Strandberg, U., Keinänen, M. et al. Distinctive Lipid Composition of the Copepod Limnocalanus macrurus with a High Abundance of Polyunsaturated Fatty Acids. Lipids 49, 919–932 (2014). https://doi.org/10.1007/s11745-014-3933-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-014-3933-4

Keywords

Navigation