Skip to main content
Log in

Enhanced Solubility and Oral Bioavailability of γ-Tocotrienol Using a Self-Emulsifying Drug Delivery System (SEDDS)

  • Original Article
  • Published:
Lipids

Abstract

The aim of this study was to evaluate the in vitro and in vivo performance of γ-tocotrienol (γ-T3) incorporated in a self-emulsifying drug delivery system (SEDDS) and to compare its enhanced performance to a commercially available product, namely Tocovid Suprabio™ (hereafter Tocovid), containing tocotrienols. The solubilization of γ-T3 was tested in a dynamic in vitro lipolysis model followed by in vitro cellular uptake study for the lipolysis products. In addition, in vitro uptake studies using Caco2 cells were conducted at different concentrations of γ-T3 prepared as SEDDS, Tocovid, or mixed micelles. γ-T3 incorporated in SEDDS or Tocovid was orally administered to rats at different doses and absolute oral bioavailability from both formulations were determined. The dynamic in vitro lipolysis experiment showed about two fold increase in the solubilization of γ-T3 prepared as SEDDS compared to Tocovid, which correlated with higher cellular uptake in the subsequent uptake studies. In vitro cellular uptake and in vivo oral bioavailability studies have shown a twofold increase in the cellular uptake and oral bioavailability of γ-T3 incorporated in SEDDS compared to Tocovid as a result of improvement in its solubility and passive uptake as confirmed by in vitro studies. In conclusion, incorporation of γ-T3 in SEDDS formulation enhanced γ-T3 solubilization and passive permeability, thus its cellular uptake and oral bioavailability when compared to Tocovid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MM:

Mixed micelles

NPC1L1:

Niemann-pick C1-like 1

SEDDS:

Self-emulsifying drug delivery system

TRF:

Tocotrienols rich fraction

δ-T3:

Delta-tocotrienol

γ-T3:

Gamma-tocotrienol

References

  1. Gopalan A, Yu W, Jiang Q, Jang Y, Sanders BG, Kline K (2012) Involvement of de novo ceramide synthesis in gamma-tocopherol and gamma-tocotrienol-induced apoptosis in human breast cancer cells. Mol Nutr Food Res 56:1803–1811

    Article  CAS  PubMed  Google Scholar 

  2. Sylvester PW, Shah S (2005) Intracellular mechanisms mediating tocotrienol-induced apoptosis in neoplastic mammary epithelial cells. Asia Pac J Clin Nutr 14:366–373

    CAS  PubMed  Google Scholar 

  3. Wong RS, Radhakrishnan AK, Ibrahim TA, Cheong SK (2012) Delta- and gamma-tocotrienols induce classical ultrastructural apoptotic changes in human T lymphoblastic leukemic cells. Microsc Microanal 18:462–469

    Article  CAS  PubMed  Google Scholar 

  4. Jiang Q, Rao X, Kim CY, Freiser H, Zhang Q, Jiang Z, Li G (2012) Gamma-tocotrienol induces apoptosis and autophagy in prostate cancer cells by increasing intracellular dihydrosphingosine and dihydroceramide. Int J Cancer 130:685–693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Manu KA, Shanmugam MK, Ramachandran L, Li F, Fong CW, Kumar AP, Tan P, Sethi G (2012) First evidence that gamma-tocotrienol inhibits the growth of human gastric cancer and chemosensitizes it to capecitabine in a xenograft mouse model through the modulation of NF-kappaB pathway. Clin Cancer Res 18:2220–2229

    Article  CAS  PubMed  Google Scholar 

  6. Kani K, Momota Y, Harada M, Yamamura Y, Aota K, Yamanoi T, Takano H, Motegi K, Azuma M (2013) Gamma-tocotrienol enhances the chemosensitivity of human oral cancer cells to docetaxel through the downregulation of the expression of NF-kappaB-regulated anti-apoptotic gene products. Int J Oncol 42:75–82

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Gopalan A, Yu W, Sanders BG, Kline K (2013) Eliminating drug resistant breast cancer stem-like cells with combination of simvastatin and gamma-tocotrienol. Cancer Lett 328:285–296

    Article  CAS  PubMed  Google Scholar 

  8. Sylvester PW (2012) Synergistic anticancer effects of combined gamma-tocotrienol with statin or receptor tyrosine kinase inhibitor treatment. Genes Nutr 7:63–74

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Fukui K, Ushiki K, Takatsu H, Koike T, Urano S (2012) Tocotrienols prevent hydrogen peroxide-induced axon and dendrite degeneration in cerebellar granule cells. Free Radic Res 46:184–193

    Article  CAS  PubMed  Google Scholar 

  10. Abd Manan N, Mohamed N, Shuid AN (2012) Effects of low-dose versus high-dose gamma-tocotrienol on the bone cells exposed to the hydrogen peroxide-induced oxidative stress and apoptosis. Evid Based Complement Alternat Med 2012:680834

    PubMed Central  PubMed  Google Scholar 

  11. Mehat MZ, Shuid AN, Mohamed N, Muhammad N, Soelaiman IN (2010) Beneficial effects of vitamin E isomer supplementation on static and dynamic bone histomorphometry parameters in normal male rats. J Bone Miner Metab 28:503–509

    Article  CAS  PubMed  Google Scholar 

  12. Yap SP, Yuen KH, Lim AB (2003) Influence of route of administration on the absorption and disposition of alpha-, gamma- and delta-tocotrienols in rats. J Pharm Pharmacol 55:53–58

    Article  CAS  PubMed  Google Scholar 

  13. Yap SP, Yuen KH, Wong JW (2001) Pharmacokinetics and bioavailability of alpha-, gamma- and delta-tocotrienols under different food status. J Pharm Pharmacol 53:67–71

    Article  CAS  PubMed  Google Scholar 

  14. Abuasal BS, Qosa H, Sylvester PW, Kaddoumi A (2012) Comparison of the intestinal absorption and bioavailability of gamma-tocotrienol and alpha-tocopherol: in vitro, in situ and in vivo studies. Biopharm Drug Dispos 33:246–256

    Article  CAS  PubMed  Google Scholar 

  15. Abuasal B, Sylvester PW, Kaddoumi A (2010) Intestinal absorption of gamma-tocotrienol is mediated by Niemann-Pick C1-like 1: in situ rat intestinal perfusion studies. Drug Metab Dispos 38:939–945

    Article  CAS  PubMed  Google Scholar 

  16. Charman SA, Charman WN, Rogge MC, Wilson TD, Dutko FJ, Pouton CW (1992) Self-emulsifying drug delivery systems: formulation and biopharmaceutic evaluation of an investigational lipophilic compound. Pharm Res 9:87–93

    Article  CAS  PubMed  Google Scholar 

  17. Pouton CW (2006) Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci 29:278–287

    Article  CAS  PubMed  Google Scholar 

  18. O’Driscoll CM (2002) Lipid-based formulations for intestinal lymphatic delivery. Eur J Pharm Sci 15:405–415

    Article  PubMed  Google Scholar 

  19. Larsen A, Holm R, Pedersen ML, Mullertz A (2008) Lipid-based formulations for Danazol containing a digestible surfactant, Labrafil M2125CS: in vivo bioavailability and dynamic in vitro lipolysis. Pharm Res 25:2769–2777

    Article  CAS  PubMed  Google Scholar 

  20. Karpf DM, Holm R, Kristensen HG, Mullertz A (2004) Influence of the type of surfactant and the degree of dispersion on the lymphatic transport of halofantrine in conscious rats. Pharm Res 21:1413–1418

    Article  CAS  PubMed  Google Scholar 

  21. Trevaskis NL, McEvoy CL, McIntosh MP, Edwards GA, Shanker RM, Charman WN, Porter CJ (2010) The role of the intestinal lymphatics in the absorption of two highly lipophilic cholesterol ester transfer protein inhibitors (CP524,515 and CP532,623). Pharm Res 27:878–893

    Article  CAS  PubMed  Google Scholar 

  22. Holm R, Hoest J (2004) Successful in silico predicting of intestinal lymphatic transfer. Int J Pharm 272:189–193

    Article  CAS  PubMed  Google Scholar 

  23. Constantinides PP (1995) Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm Res 12:1561–1572

    Article  CAS  PubMed  Google Scholar 

  24. Balakrishnan P, Lee BJ, Oh DH, Kim JO, Hong MJ, Jee JP, Kim JA, Yoo BK, Woo JS, Yong CS, Choi HG (2009) Enhanced oral bioavailability of dexibuprofen by a novel solid self-emulsifying drug delivery system (SEDDS). Eur J Pharm Biopharm 72:539–545

    Article  CAS  PubMed  Google Scholar 

  25. Gao P, Morozowich W (2006) Development of supersaturatable self-emulsifying drug delivery system formulations for improving the oral absorption of poorly soluble drugs. Expert Opin Drug Deliv 3:97–110

    Article  CAS  PubMed  Google Scholar 

  26. Pouton CW (2000) Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur J Pharm Sci 11(Suppl 2):S93–S98

    Article  CAS  PubMed  Google Scholar 

  27. Hauss DJ (2007) Oral lipid-based formulations. Adv Drug Deliv Rev 59:667–676

    Article  CAS  PubMed  Google Scholar 

  28. Pouton CW, Porter CJ (2008) Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev 60:625–637

    Article  CAS  PubMed  Google Scholar 

  29. Abuasal BS, Lucas C, Peyton B, Alayoubi A, Nazzal S, Sylvester PW, Kaddoumi A (2012) Enhancement of intestinal permeability utilizing solid lipid nanoparticles increases gamma-tocotrienol oral bioavailability. Lipids 47:461–469

    Article  CAS  PubMed  Google Scholar 

  30. Constantinides PP, Tustian A, Kessler DR (2004) Tocol emulsions for drug solubilization and parenteral delivery. Adv Drug Deliv Rev 56:1243–1255

    Article  CAS  PubMed  Google Scholar 

  31. Yap SP, Yuen KH (2004) Influence of lipolysis and droplet size on tocotrienol absorption from self-emulsifying formulations. Int J Pharm 281:67–78

    Article  CAS  PubMed  Google Scholar 

  32. Alqahtani S, Alayoubi A, Nazzal S, Sylvester PW, Kaddoumi A (2013) Nonlinear absorption kinetics of self-emulsifying drug delivery systems (SEDDS) containing tocotrienols as lipophilic molecules: in vivo and in vitro studies. AAPS J 15:684–695

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Ho DH YY, Yap YS (2003) Drug delivery system:formulation for fat-soluble drugs. US. Patent 6,596,306

  34. Hovid Pharmaceuticals Company (accessed April 2014) Tocovid SupraBio. http://www.hovidcom/productphp#

  35. Alayoubi A, Satyanarayanajois SD, Sylvester PW, Nazzal S (2012) Molecular modelling and multisimplex optimization of tocotrienol-rich self emulsified drug delivery systems. Int J Pharm 426:153–161

    Article  CAS  PubMed  Google Scholar 

  36. Narushima K, Takada T, Yamanashi Y, Suzuki H (2008) Niemann-pick C1-like 1 mediates alpha-tocopherol transport. Mol Pharmacol 74:42–49

    Article  CAS  PubMed  Google Scholar 

  37. Porter CJ, Trevaskis NL, Charman WN (2007) Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov 6:231–248

    Article  CAS  PubMed  Google Scholar 

  38. Dahan A, Hoffman A (2007) The effect of different lipid based formulations on the oral absorption of lipophilic drugs: the ability of in vitro lipolysis and consecutive ex vivo intestinal permeability data to predict in vivo bioavailability in rats. Eur J Pharm Biopharm 67:96–105

    Article  CAS  PubMed  Google Scholar 

  39. Ali H, Nazzal M, Zaghloul AA, Nazzal S (2008) Comparison between lipolysis and compendial dissolution as alternative techniques for the in vitro characterization of alpha-tocopherol self-emulsified drug delivery systems (SEDDS). Int J Pharm 352:104–114

    Article  CAS  PubMed  Google Scholar 

  40. Abuasal B, Thomas S, Sylvester PW, Kaddoumi A (2011) Development and validation of a reversed-phase HPLC method for the determination of gamma-tocotrienol in rat and human plasma. Biomed Chromatogr 25:621–627

    Article  CAS  PubMed  Google Scholar 

  41. Tomoda H, Kishimoto Y, Lee YC (1989) Temperature effect on endocytosis and exocytosis by rabbit alveolar macrophages. J Biol Chem 264:15445–15450

    CAS  PubMed  Google Scholar 

  42. Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal Kaddoumi.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alqahtani, S., Alayoubi, A., Nazzal, S. et al. Enhanced Solubility and Oral Bioavailability of γ-Tocotrienol Using a Self-Emulsifying Drug Delivery System (SEDDS). Lipids 49, 819–829 (2014). https://doi.org/10.1007/s11745-014-3923-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-014-3923-6

Keywords

Navigation