Skip to main content
Log in

Background Diet and Fat Type Alters Plasma Lipoprotein Response but not Aortic Cholesterol Accumulation in F1B Golden Syrian Hamsters

  • Original Article
  • Published:
Lipids

Abstract

Dietary modification alters plasma lipoprotein profiles and atherosclerotic lesion progression in humans and some animal models. Variability in response to diet induced atherosclerosis has been reported in hamsters. Assessed was the interaction between background diet composition and dietary fat type on aortic cholesterol accumulation, lipoprotein profiles, hepatic lipids and selected genes. F1B Golden Syrian hamsters (20/group) were fed (12 weeks) semi-purified or non-purified diets containing either 10 % (w/w) coconut oil or safflower oil and 0.15 % (w/w) cholesterol. The non-purified diets relative to semi-purified diets resulted in significantly higher TC (72 % [percent difference] and 38 %, coconut oil and safflower oil, respectively) and nHDL-C (84 and 61 %, coconut oil and safflower oil, respectively), and lower HDL-C (−47 and −45 %, coconut oil and safflower oil, respectively) concentrations. Plasma triacylglycerol concentrations in the hamsters fed the non-purified coconut oil-supplemented diets were three- to fourfold higher than non-purified safflower oil-supplemented, and both semi-purified diets. With the exception of HDL-C, a significant effect of fat type was observed in TC, nHDL-C and triacylglycerol (all P < 0.05) concentrations. Regardless of diet induced differences in lipoprotein profiles, there was no significant effect on aortic cholesterol accumulation. There was an inverse relationship between plasma nHDL-C and triacylglycerol, and hepatic cholesteryl ester content (P < 0.001). Diet induced differences in hepatic gene transcription (LDL receptor, apoB-100, microsomal transfer protein) were not reflected in protein concentrations. Although hamsters fed non-purified and/or saturated fatty acid-supplemented diets had more atherogenic lipoprotein profiles compared to hamsters fed semi-purified and/or polyunsaturated fatty acid-supplemented diets these differences were not reflected in aortic cholesterol accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. American Heart Association Heart Disease and Stroke Statistics—2012 Update. http://circahajournalsorg/content/early/2011/12/15/CIR0b013e31823ac046 (accessed Jan 2012)

  2. Boudjeltia K, Guillaume M, Henuzet C (2006) Fibrinolysis and cardiovascular risk factors: association with fibrinogen, lipids, and monocyte count. Eur J Intern Med 17:102–108

    Article  Google Scholar 

  3. Danesh J, Lewington S, Thompson S, Collaboration FS (2005) Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality. An individual participant meta-analysis. JAMA 294:1799–1809

    PubMed  CAS  Google Scholar 

  4. Expert Panel on Detection Evaluation and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (2001) Executive summary of the third report of the National Cholesterol Education Program (NCEP). JAMA 285:2486–2497

    Article  Google Scholar 

  5. Gatto N, Hodis H, Liu C-R (2008) Brachial artery vasoreactivity is associated with cross-sectional and longitudinal anatomical measures of atherosclerosis in post-menopausal women with coronary artery disease. Atherosclerosis 196:674–681

    Article  PubMed  CAS  Google Scholar 

  6. Ingelsson E, Pencina M, Tofler G (2007) Multimarker approach to evaluate the incidence of the metabolic syndrome and longitudinal changes in metabolic risk factors. The Framingham Offspring Study. Circulation 116:984–992

    Article  PubMed  CAS  Google Scholar 

  7. Libby P, Ridker P, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143

    Article  PubMed  CAS  Google Scholar 

  8. Vakkilainen J, Steiner G, Ansauer J (2003) Relationships between low density lipoprotein particle size, plasma lipoproteins, and progression of coronary artery disease: the Diabetes Atherosclerosis Intervention Study (DAIS). Circulation 107:1733–1737

    Article  PubMed  Google Scholar 

  9. Wallace C, Newhouse S, Braund P, Zhang F (2008) Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. Am J Hum Genet 82:139–149

    Article  PubMed  CAS  Google Scholar 

  10. Hu FB, Willett WC (2002) Optimal diets for prevention of coronary heart disease. JAMA 288:2569–2578

    Article  PubMed  CAS  Google Scholar 

  11. Lichtenstein AH (2006) Thematic review series: patient-oriented research. Dietary fat, carbohydrate, and protein: effects on plasma lipoprotein patterns. J Lipid Res 47:1661–1667

    Article  PubMed  CAS  Google Scholar 

  12. Lichtenstein AH, Appel LJ, Brands M, Carnethon M, Daniels S, Franch HA, Franklin B, Kris-Etherton P, Harris WS, Howard B et al (2006) Diet and lifestyle recommendations revision 2006: a scientific statement from the American Heart Association Nutrition Committee. Circulation 114:82–96

    Article  PubMed  Google Scholar 

  13. Marckmann P, Raben A, Astrup A (2000) Ad libitum intake of low-fat diets rich in either starchy foods or sucrose: effects on blood lipids, factor VII coagulant activity, and fibrinogen. Metabolism 49:731–735

    Article  PubMed  CAS  Google Scholar 

  14. Raben A, Holst JJ, Madsen J, Astrup A (2001) Diurnal metabolic profiles after 14 d of an ad libitum high-starch, high-sucrose, or high-fat diet in normal-weight never-obese and post obese women. Am J Clin Nutr 73:177–189

    PubMed  CAS  Google Scholar 

  15. Dillard A, Matthan NR, Lichtenstein AH (2010) Use of hamster as a model to study diet-induced atherosclerosis. Nutr Metab 7:89

    Article  CAS  Google Scholar 

  16. Ahn YS, Smith D, Osada J, Li Z, Schaefer EJ, Ordovas JM (1994) Dietary fat saturation affects apolipoprotein gene expression and high density lipoprotein size distribution in golden Syrian hamsters. J Nutr 124:2147–2155

    PubMed  CAS  Google Scholar 

  17. Chen J, Song W, Redinger RN (1996) Effects of dietary cholesterol on hepatic production of lipids and lipoproteins in isolated hamster liver. Hepatology 24:423–434

    Article  Google Scholar 

  18. Quig DW, Arbeeny CM, Zilversmit DB (1991) Effects of hyperlipidemias in hamster on lipid transfer protein activity and unidirectional cholesteryl ester transfer in plasma. Biochim Biophys Acta 1093:257–264

    Google Scholar 

  19. Remillard P, Shen G, Milne R, Maheux P (2001) Induction of cholesteryl ester transfer protein in adipose tissue and plasma of the fructose-fed hamster. Life Sci 69:677–687

    Article  PubMed  CAS  Google Scholar 

  20. Spady D, Dietschy J (1985) Dietary saturated triacylglycerols suppress hepatic low density lipoprotein receptor activity in the hamster. Proc Natl Acad Sci USA 82:4526–4530

    Article  PubMed  CAS  Google Scholar 

  21. Trautwein EA, Liang J, Hayes KC (1993) Cholesterol gallstone induction in hamsters reflects strain differences in plasma lipoproteins and bile acid profiles. Lipids 28:305–312

    Article  PubMed  CAS  Google Scholar 

  22. Liu G, Fan L, Redinger R (1991) The association of hepatic apoprotein and lipid metabolism in hamsters and rats. Comp Biochem Physiol 99A:223–228

    Article  CAS  Google Scholar 

  23. Kahlon T, Chow F, Irving D, Sayre R (1996) Cholesterol response and foam cell formation in hamsters fed two levels of saturated fat and various levels of cholesterol. Nutr Res 16:1353–1368

    Article  CAS  Google Scholar 

  24. Kowala MC, Nunnari JJ, Durham SK, Nicolosi RJ (1991) Doxazosin and cholestyramine similarly decrease fatty streak formation in the aortic arch of hyperlipidemic hamsters. Atherosclerosis 91:35–49

    Article  PubMed  CAS  Google Scholar 

  25. Nistor A, Bulla A, Filip DA, Radu A (1987) The hyperlipidemic hamster as a model of experimental atherosclerosis. Atherosclerosis 68:159–173

    Article  PubMed  CAS  Google Scholar 

  26. Matthan NR, Resteghini N, Ausman LA, Lichtenstein AH (2010) Long-term fatty acids stability in human serum cholesteryl ester, triglyceride and phospholipid fractions. J Lipid Res 51:2826–2832

    Article  PubMed  CAS  Google Scholar 

  27. Lecker J, Matthan N, Billheimer J, Rader D, Lichtenstein AH (2010) Impact of dietary fat type within the context of altered cholesterol homeostasis on cholesterol and lipoprotein metabolism in the F1B hamster. Metabolism 59:1491–1501

    Article  PubMed  CAS  Google Scholar 

  28. Matthan NR, Dillard A, Lecker JL, Ip B, Lichtenstein AH (2009) Effects of dietary palmitoleic acid on plasma lipoprotein profile and aortic cholesterol accumulation are similar to those of other unsaturated fatty acids in the F1B golden Syrian hamster. J Nutr 139:215–221

    Article  PubMed  CAS  Google Scholar 

  29. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipid from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  30. Carr TP, Andresen CJ, Rudel LL (1993) Enzymatic determination of triglyceride, free cholesterol, and total cholesterol in tissue lipid extracts. Clin Biochem 26:39–42

    Article  PubMed  CAS  Google Scholar 

  31. Dorfman SE, Smith DE, Osgood DP, Lichtenstein AH (2003) Study of diet-induced changes in lipoprotein metabolism in two strains of Golden-Syrian hamsters. J Nutr 133:4183–4188

    PubMed  CAS  Google Scholar 

  32. Robins S, Fasulo J, Patton G, Schaefer E, Smith D, Ordovas J (1995) Gender differences in the development of hyperlipemia and atherosclerosis in hybrid hamsters. Metabolism 44:1326–1331

    Article  PubMed  CAS  Google Scholar 

  33. Pereira MA, O’Reilly E, Augustsson K, Fraser GE, Goldbourt U, Heitmann BL, Hallmans G, Knekt P, Liu S, Pietinen P et al (2004) Dietary fiber and risk of coronary heart disease: a pooled analysis of cohort studies. Arch Intern Med 164:370–376

    Article  PubMed  Google Scholar 

  34. Erkkila AT, Herrington DM, Mozaffarian D, Lichtenstein AH (2005) Cereal fiber and whole-grain intake are associated with reduced progression of coronary-artery atherosclerosis in postmenopausal women with coronary artery disease. Am Heart J 150:94–101

    Article  PubMed  Google Scholar 

  35. Malik V, Popkin B, Bray G, Després J-P, Hu F (2010) Sugar-sweetened beverages, obesity, Type 2 diabetes mellitus, and cardiovascular disease risk. Circulation 121:1356–1364

    Article  PubMed  Google Scholar 

  36. Jakobsen MU, O’Reilly EJ, Heitmann BL, Pereira MA, Balter K, Fraser GE, Goldbourt U, Hallmans G, Knekt P, Liu S et al (2009) Major types of dietary fat and risk of coronary heart disease: a pooled analysis of 11 cohort studies. Am J Clin Nutr 89:1425–1432

    Article  PubMed  CAS  Google Scholar 

  37. Dorfman SE, Wang S, Vega-Lopez S, Jauhiainen M, Lichtenstein AH (2005) Dietary fatty acids and cholesterol differentially modulate HDL cholesterol metabolism in Golden-Syrian hamsters. J Nutr 135:492–498

    PubMed  CAS  Google Scholar 

  38. Lecker J, Matthan N, Billheimer J, Rader D, Lichtenstein A (2011) Changes in cholesterol homeostasis modify the response of F1B hamsters to dietary very long chain n-3 and n-6 polyunsaturated fatty acids. Lipids Health Dis 10:186

    Article  PubMed  CAS  Google Scholar 

  39. Stein O, Dabach Y, Hollander G, Halperin G, Thiery J, Stein Y (1996) Relative resistance of the hamster to aortic atherosclerosis in spite of prolonged vitamin E deficiency and dietary hypercholesterolemia. Putative effect of increased HDL? Biochim Biophys Acta 1299:216–222

    Article  PubMed  Google Scholar 

  40. Wilson T, Nicolosi R, Saati A, Kotyla T, Kritchevsky D (2006) Conjugated linoleic acid isomers reduce blood cholesterol levels but not aortic cholesterol accumulation in hypercholesterolemic hamsters. Lipids 41:41–48

    Article  PubMed  CAS  Google Scholar 

  41. Lichtenstein AH, Chobanian AV (1990) Effect of fish oil on atherogenesis in Watanabe heritable hyperlipidemic rabbit. Arteriosclerosis 10:597–606

    Article  PubMed  CAS  Google Scholar 

  42. Cheema SK, Cornish ML (2007) Bio F1B hamster: a unique animal model with reduced lipoprotein lipase activity to investigate nutrient mediated regulation of lipoprotein metabolism. Nutr Metab 10:27

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge and thank Dr. Donald Smith and the Comparative Biology Unit staff (Tufts University, Boston) for assistance with the hamster feeding and care. Supported by USDA agreement 588-1950-9-001.

Conflict of interest

The authors of this manuscript wish to emphatically state that they do not have any financial relationships, personal relationships, or intellectual commitments that might bias the work or interfere with objective judgment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice H. Lichtenstein.

Additional information

Any opinions, findings, conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the USDA.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 kb)

About this article

Cite this article

Dillard, A., Matthan, N.R., Spartano, N.L. et al. Background Diet and Fat Type Alters Plasma Lipoprotein Response but not Aortic Cholesterol Accumulation in F1B Golden Syrian Hamsters. Lipids 48, 1177–1184 (2013). https://doi.org/10.1007/s11745-013-3840-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-013-3840-0

Keywords

Navigation