Skip to main content
Log in

How Selected Tissues of Lactating Holstein Cows Respond to Dietary Polyunsaturated Fatty Acid Supplementation

  • Original Article
  • Published:
Lipids

Abstract

The effect of a 10-week supplementation with polyunsaturated fatty acids [via sunflower oil/DHA-rich algae (SUNA) or linseed oil/DHA-rich algae (LINA) enriched diets] versus saturated fatty acids (SAT) of lactating German Holstein dairy cows in mid-lactation on expression patterns of lipid metabolism-associated genes and gene products in hepatic, longissimus muscle and subcutaneous/perirenal/omental adipose tissue was assessed. Most pronounced transcriptomic responses to dietary PUFA were obtained in hepatic [down-regulated ACACA (FC = 0.83, SUNA; FC = 0.86, LINA), FADS1 (FC = 0.60, SUNA; FC = 0.72, LINA), FADS2 (FC = 0.64, SUNA; FC = 0.79, LINA), FASN (FC = 0.64, SUNA; FC = 0.72, LINA), SCD (FC = 0.37, SUNA; FC = 0.47, LINA) and SREBF1 (FC = 0.79, SUNA, LINA) expression] and omental adipose [up-regulated ACACA (FC = 1.58, SUNA; FC = 1.22, LINA), ADFP (FC = 1.33, SUNA; FC = 1.32, LINA), CEBPA (FC = 1.75, SUNA; FC = 1.40, LINA), FASN (FC = 1.57, SUNA; FC = 1.21, LINA), LPL (FC = 1.50, SUNA; FC = 1.20, LINA), PPARG (FC = 1.36, SUNA; FC = 1.12, LINA), SCD (FC = 1.41, SUNA; FC = 1.17, LINA) and SREBF1 (FC = 1.56, SUNA; FC = 1.18, LINA) expression] tissue. Interestingly, gene/gene product associations were comparatively low in hepatic and omental adipose tissue compared with longissimus muscle, perirenal adipose and subcutaneous adipose tissue, indicating matches only in regard to minor concentrations of SCD product 18:1c9, FADS1 product 20:4n-6 and FADS2 product 18:3n-6 in hepatic tissue, and higher concentrations of ACACA and FASN gene products 12:0 and 14:0 and SCD product 18:2c9,t11 in omental adipose tissue. Whereas all analyzed tissues accumulated dietary PUFA and their ruminally generated biohydrogenation products, tissue-divergent preferences for certain fatty acids were identified. This descriptive study reports tissue-divergent effects of dietary PUFA and outlines the significance of a PUFA intervention with regard to dairy cows’ nutritional management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACACA:

Acetyl-CoA carboxylase α

ACLY:

ATP citrate lyase

B2M:

β2-Microglobulin

ADFP:

Adipophilin

CD36:

Cluster of differentiation 36

CEBPA:

CCAAT/enhancer-binding protein α

CEBPB:

CCAAT/enhancer-binding protein β

CHRNA1:

cholinergic receptor, nicotinic, α1

DHA:

Docosahexaenoic acid

EEF1A2:

Eukaryotic translation elongation factor 1 α2

FADS1:

Δ5 Desaturase

FADS2:

Δ6 Desaturase

FAME:

Fatty acid methyl ester(s)

FASN:

Fatty acid synthase

FC:

Fold change

FDFT1:

Farnesyl diphosphate farnesyl transferase 1

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

LC-PUFA:

Long-chain polyunsaturated fatty acid(s)

LINA:

Linseed oil/algae

LPL:

Lipoprotein lipase

MTTP:

Microsomal triglyceride transfer protein

MUFA:

Monounsaturated fatty acid(s)

PPARG:

Peroxisome proliferator-activated receptor γ

RPS9:

Ribosomal protein S9

SAT:

Rumen-protected saturated fat

SCD:

Stearoyl-CoA desaturase

SEMA3C:

Sema domain 3C

SFA:

Saturated fatty acid(s)

SREBF1:

Sterol regulatory element binding transcription factor 1

SUNA:

Sunflower oil/algae

TFA:

Total fatty acids

UXT:

Ubiquitously expressed transcript

References

  1. Dodson MV, Hausman GJ, Guan L, Du M, Rasmussen TP, Poulos SP, Mir P, Bergen WG, Fernyhough ME, McFarland DC, Rhoads RP, Soret B, Reecy JM, Velleman SG, Jiang Z (2010) Lipid metabolism, adipocyte depot physiology and utilization of meat animals as experimental models for metabolic research. Int J Biol Sci 6:691–699

    Article  PubMed  CAS  Google Scholar 

  2. Greenwood PL, Café LM (2007) Prenatal and preweaning growth and nutrition of cattle: longterm consequences for beef production. Animal 1:1283–1296

    Article  PubMed  CAS  Google Scholar 

  3. Bach A (2012) Ruminant nutrition symposium: modulation of metabolism through nutrition and management. J Animal Sci 90:1833–1834

    Article  Google Scholar 

  4. Robinson RS, Pushpakumara PGA, Cheng Z, Peters AR, Abayasekara DRE, Wathes DC (2002) Effects of dietary polyunsaturated fatty acids on ovarian and uterine function in lactating dairy cows. Reprod 124:119–131

    Article  CAS  Google Scholar 

  5. Jaquiery AL, Oliver MH, Honeyfield-Ross M, Harding JE, Bloomfield FH (2012) Periconceptional undernutrition in sheep affects adult phenotype only in males. J Nutr Metab 2012:123610. doi:10.1155/2012/123610

    PubMed  Google Scholar 

  6. Van Saun RJ, Sniffen CJ (1996) Nutritional management of the pregnant dairy cow to optimize health, lactation and reproductive performance. Animal Feed Sci Technol 59:13–26

    Article  Google Scholar 

  7. Rhoads ML, Rhoads RP, VanBaale MJ, Collier RJ, Sanders SR, Weber WJ, Crooker BA, Baumgard LH (2009) Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin. J Dairy Sci 92:1986–1997

    Article  PubMed  CAS  Google Scholar 

  8. Ingvartsen KL, Moyes K (2012) Nutrition, immune function and health of dairy cattle. Animal 24:1–11

    Google Scholar 

  9. Schingoethe DJ, Brouk MJ, Lightfield KD, Baer RJ (1996) Lactational responses of dairy cows fed unsaturated fat from extruded soybeans or sunflower seeds. J Dairy Sci 79:1244–1249

    Article  PubMed  CAS  Google Scholar 

  10. Sklan D, Kaim M, Moallem U, Folman Y (1994) Effect of dietary calcium soaps on milk yield, body weight, reproductive hormones, and fertility in first parity and older cows. J Dairy Sci 77:1652–1666

    Article  PubMed  CAS  Google Scholar 

  11. Theurer ML, Block E, Sanchez WK, McGuire MA (2009) Calcium salts of polyunsaturated fatty acids deliver more essential fatty acids to the lactating dairy cow. J Dairy Sci 92:2051–2056

    Article  PubMed  CAS  Google Scholar 

  12. Angulo J, Hiller B, Albrecht E, Olivera M, Mahecha L, Nuernberg G, Dannenberger D, Nuernberg K (2012) Effect of different dietary fats on protein expression of sterol regulatory element-binding protein 1 (SREBP-1) in mammary gland tissue of lactating cows. Livestock Sci 143:300–304

    Article  Google Scholar 

  13. Loor JJ, Ferlay A, Ollier A, Doreau M, Chilliard Y (2005) Relationship among trans and conjugated fatty acids and bovine milk fat yield due to dietary concentrate and linseed oil. J Dairy Sci 88:726–740

    Article  PubMed  CAS  Google Scholar 

  14. Fearon AM, Mayne CS, Beattie JAM, Bruce DW (2004) Effect of level of oil inclusion in the diet of dairy cows at pasture on animal performance and milk composition and properties. J Sci Food Agric 84:497–504

    Article  CAS  Google Scholar 

  15. Shingfield KJ, Reynolds CK, Lupoli B, Toivonen V, Yurawecz MP, Delmonte P, Griinari JM, Grandison AS, Beever DE (2005) Effect of forage type and proportion of concentrate in the diet on milk fatty acid composition in cows given sunflower oil and fish oil. Animal Sci 80:225–238

    CAS  Google Scholar 

  16. Dewhurst RJ, Shingfield KJ, Lee MRF, Scollan ND (2006) Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Animal Feed Sci Technol 131:168–206

    Article  CAS  Google Scholar 

  17. Shingfield KJ, Saebø A, Saebø PC, Toivonen V, Griinari JM (2009) Effect of abomasal infusions of a mixture of octadecenoic acids on milk fat synthesis in lactating cows. J Dairy Sci 92:4317–4329

    Article  PubMed  CAS  Google Scholar 

  18. Perfield JW, Lock AL, Griinari JM, Saebø A, Delmonte P, Dwyer DA, Bauman DE (2007) Trans-9, cis-11 conjugated linoleic acid reduces milk fat synthesis in lactating dairy cows. J Dairy Sci 90:2211–2218

    Article  PubMed  CAS  Google Scholar 

  19. Harvatine KJ, Bauman DE (2011) Characterization of the acute lactational response to trans-10, cis-12 conjugated linoleic acid. J Dairy Sci 94:6047–6056

    Article  PubMed  CAS  Google Scholar 

  20. Becú-Villalobos D, García-Tornadú I, Shroeder G, Salado EE, Gagliostro G, Delavaud C, Chilliard Y, Lacau-Mengido IM (2007) Effect of fat supplementation on leptin, insulin-like growth factor I, growth hormone, and insulin in cattle. Can J Vet Res 71:218–225

    PubMed  Google Scholar 

  21. Butler WR (2000) Nutritional interactions with reproductive performance in dairy cattle. Animal Reprod Sci 60:449–457

    Article  Google Scholar 

  22. Lessard M, Gagnon N, Petit HV (2003) Immune response of postpartum dairy cows fed flaxseed. J Dairy Sci 86:2647–2657

    Article  PubMed  CAS  Google Scholar 

  23. Hiller B, Herdmann A, Nuernberg K (2011) Dietary n-3 fatty acids significantly suppress lipogenesis in bovine muscle and adipose tissue: a functional genomics approach. Lipids 46:557–567

    Article  PubMed  CAS  Google Scholar 

  24. Herdmann A, Nuernberg K, Martin J, Nuernberg G, Doran O (2010) Effect of dietary fatty acids on expression of lipogenic enzymes and fatty acid profile in tissues of bulls. Animal 4:755–762

    Article  PubMed  CAS  Google Scholar 

  25. Hiller B, Hocquette JF, Cassar-Malek I, Nuernberg G, Nuernberg K (2012) Dietary n-3 polyunsaturated fatty acids affect lipid metabolism and tissue function related genes in bovine muscle. Br J Nutr 108:858–863

    Article  PubMed  CAS  Google Scholar 

  26. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:1–10

    Article  Google Scholar 

  27. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  28. Dannenberger D, Nuernberg G, Scollan N, Schabbel W, Steinhart H, Ender K, Nuernberg K (2004) Effect of diet on the deposition of n-3 fatty acids conjugated linoleic- and C18:1 trans fatty acid isomers in muscle lipids of German Holstein bulls. J Agric Food Chem 52:6607–6615

    Article  PubMed  CAS  Google Scholar 

  29. SAS Institute Inc (2009) SAS/STAT® 9.2, User’s Guide, 2nd edn. SAS Institute Inc, Cary

    Google Scholar 

  30. Angulo J, Mahecha L, Nuernberg K, Nuernberg G, Dannenberger D, Olivera M, Boutinaud M, Leroux C, Albrecht E, Bernard E (2012) Effects of polyunsaturated fatty acids from plant oils and algae on milk fat yield and composition are associated with mammary lipogenic and SREBF1 gene expression. Animal. doi:10.1017/S1751731112000845

    PubMed  Google Scholar 

  31. Thering BJ, Graugnard DE, Piantoni P, Loor JJ (2009) Adipose tissue lipogenic gene networks due to lipid feeding and milk fat depression in lactating cows. J Dairy Sci 92:4290–4300

    Article  PubMed  CAS  Google Scholar 

  32. Caldari-Torres C, Lock AL, Staples CR, Badinga L (2011) Performance, metabolic, and endocrine responses of periparturient Holstein cows fed 3 sources of fat. J Dairy Sci 94:1500–1510

    Article  PubMed  CAS  Google Scholar 

  33. Baik M, Etchebarne BE, Bong J, VandeHaar MJ (2009) Gene expression profiling of liver and mammary tissues of lactating dairy cows. Asian Austral J Animal Sci 6:871–884

    Google Scholar 

  34. Loor JJ (2010) Genomics of metabolic adaptations in the peripartal cow. Animal 4:1110–1139

    Article  PubMed  CAS  Google Scholar 

  35. Hoggard N, Cruickshank M, Moar KM, Bashir S, Mayer CD (2012) Using gene expression to predict differences in the secretome of human omental versus subcutaneous adipose tissue. Obes. doi:10.1038/oby.2012.14

  36. Harvatine KJ, Perfield JW, Bauman DE (2009) Expression of enzymes and key regulators of lipid synthesis is up-regulated in adipose tissue during CLA-induced milk fat depression in dairy cows. J Nutr 139:849–854

    Article  PubMed  CAS  Google Scholar 

  37. Pérez-Echarri N, Pérez-Matute P, Marcos-Gómez B, Marti A, Martínez JA, Moreno-Aliaga MJ (2009) Down-regulation in muscle and liver lipogenic genes: EPA ethyl ester treatment in lean and overweight (high-fat-fed) rats. J Nutr Biochem 20:705–714

    Article  PubMed  Google Scholar 

  38. Kim H, Choi S, Lee H-J, Lee J-H, Choi H (2003) Suppression of fatty acid synthase by dietary polyunsaturated fatty acids is mediated by fat itself, not by peroxidative mechanism. J Biochem Molec Biol 36:258–264

    Article  CAS  Google Scholar 

  39. Ward RE, Woodward B, Otter N, Doran O (2010) Relationship between the expression of key lipogenic enzymes, fatty acid composition, and intramuscular fat content of Limousin and Aberdeen Angus cattle. Livestock Sci 127:22–29

    Article  Google Scholar 

  40. Cánovas A, Estany J, Tor M, Pena RN, Doran O (2009) Acetyl-CoA carboxylase and stearoyl-CoA desaturase protein expression in subcutaneous adipose tissue is reduced in pigs selected for decreased backfat thickness at constant intramuscular fat content. J Animal Sci 87:3905–3914

    Article  Google Scholar 

  41. Pullen DL, Liesman JS, Emery RS (1990) A species comparison of liver slice synthesis and secretion of triacylglycerol from nonesterified fatty acids in media. J Animal Sci 68:1395–1399

    CAS  Google Scholar 

  42. Kokta TA, Dodson MV, Gertler A, Hill RA (2004) Intercellular signalling between adipose tissue and muscle tissue. Domest Animal Endocrinol 27:303–331

    Article  CAS  Google Scholar 

  43. Eguinoa P, Brocklehurst S, Arana A, Mendizabal JA, Vernon RG, Purroy A (2003) Lipogenic enzyme activities in different adipose depots of Pirenaican and Holstein. J Animal Sci 81:432–440

    CAS  Google Scholar 

  44. Ingle DL, Bauman DE, Garrigus US (1972) Lipogenesis in the ruminant: in vivo site of fatty acid synthesis in sheep. J Nutr 102:617–624

    PubMed  CAS  Google Scholar 

  45. Dutta-Roy AK (2000) Cellular uptake of long-chain fatty acids: role of membrane-associated fatty-acid-binding/transport proteins. Cell Mol Life Sci 57:1360–1372

    Article  PubMed  CAS  Google Scholar 

  46. Summers LKM, Barnes SC, Fielding BA, Beysen C, Ilic V, Humphreys SM, Frayn KN (2000) Uptake of individual fatty acids into adipose tissue in relation to their presence in the diet. Am J Clin Nutr 71:1470–1477

    PubMed  CAS  Google Scholar 

  47. Chilliard Y, Robelin J (1985) Activity of lipoprotein lipase in different adipose deposits and its relation to adipocyte size in the cow during fattening or early lactation. Reprod Nutr Dev 25:287–293

    Article  PubMed  CAS  Google Scholar 

  48. Frayn KN (2000) Visceral fat and insulin resistance: causative or correlative? Br J Nutr 83:721S–725S

    Article  Google Scholar 

  49. Garaulet M, Pérez-Llamas F, Pérez-Ayala M, Martínez P, de Medina FS, Tebar FJ, Zamora S (2001) Site-specific differences in the fatty acid composition of abdominal adipose tissue in an obese population from a Mediterranean area: relation with dietary fatty acids, plasma lipid profile, serum insulin, and central obesity. Am J Clin Nutr 74:585–591

    PubMed  CAS  Google Scholar 

  50. Kloeting N, Berthold S, Kovacs P, Schoen MR, Fasshauer M, Ruschke K, Stumvoll M, Blueher M (2009) MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS ONE 4:e4699

    Article  Google Scholar 

Download references

Acknowledgments

The study was conducted and financially supported by EU Project No. FOOD-CT-2006-36241 and Colciencias Project No. 11545221319. The authors express their thanks to M. Dahm and B. Jentz for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beate Hiller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 98 kb)

About this article

Cite this article

Hiller, B., Angulo, J., Olivera, M. et al. How Selected Tissues of Lactating Holstein Cows Respond to Dietary Polyunsaturated Fatty Acid Supplementation. Lipids 48, 357–367 (2013). https://doi.org/10.1007/s11745-012-3737-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-012-3737-3

Keywords

Navigation