Skip to main content
Log in

Docosahexanoic Acid Improves Chemotherapy Efficacy by Inducing CD95 Translocation to Lipid Rafts in ER Breast Cancer Cells

  • Original Article
  • Published:
Lipids

Abstract

Docosahexanoic acid (DHA) and eicosapentanoic acid (EPA) have been shown to possess anti-carcinogenic properties in mammary cancers, both in vitro and in vivo. The objective of this study was to investigate the effect of treating three different breast cancer cell lines with DHA or EPA on cellular growth, chemotherapy efficacy, and CD95 expression and localization in the cell. MDA-MB-231, MCF-7 and SKBr-3 cells were incubated with EPA or DHA with or without chemotherapy agents [doxorubicin (dox), Herceptin]. Cell growth was assessed by WST-1 assay and CD95 expression was investigated using flow cytometry, Western blotting and confocal microscopy. DHA and EPA inhibited the growth of all three breast cancer cell lines in a dose-dependent fashion (P < 0.05). DHA, and to a lesser extent EPA, induced the movement and raft clustering of CD95 in the cell membrane (via confocal microscopy) and the surface expression (via flow cytometry) in MDA-MB-231 cells. Neither fatty acid altered the growth/metabolic activity of the non-transformed MCF-12A breast cell line. Pre-treatment with DHA, but not EPA, improved the efficacy of dox in estrogen receptor negative MDA-MB-231 cells (P < 0.05), but not in the other two cell lines. Pre-treating cells with DHA increased CD95 surface expression (threefold) and the plasma membrane raft content of CD95 (2fold) and FADD (>4-fold) after dox treatment, compared to dox treatment alone (P < 0.05). This study demonstrated that pre-treatment of estrogen receptor negative MDA-MB-231 cells with DHA increased the anti-cancer effects of dox and presents evidence to suggest that this may be mediated in part by CD95-induced apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DAPI:

4′,6′-Diamidino-2-phenylindole

DHA:

Docosahexanoic acid

DISC:

Death-inducing signaling complex

EPA:

Eicosapentanoic acid

ER:

Estrogen receptor

FADD:

Fas-associated death domain-containing protein

LNA:

Linoleic acid

OLA:

Oleic acid

PUFA:

Polyunsaturated fatty acid(s)

References

  1. Bougnoux P, Maillard V, Chajes V (2005) Omega-6/omega-3 polyunsaturated fatty acids ratio and breast cancer. World Rev Nutr Diet 94:158–165

    Article  PubMed  CAS  Google Scholar 

  2. Karmali RA, Marsh J, Fuchs C (1984) Effect of omega-3 fatty acids on growth of a rat mammary tumor. J Natl Cancer Inst 73:457–461

    PubMed  CAS  Google Scholar 

  3. Rose DP, Connolly JM (1999) Omega-3 fatty acids as cancer chemopreventive agents. Pharmacol Ther 83:217–244

    Article  PubMed  CAS  Google Scholar 

  4. Schley PD, Jijon HB, Robinson LE, Field CJ (2005) Mechanisms of omega-3 fatty acid-induced growth inhibition in MDA-MB-231 human breast cancer cells. Breast Cancer Res Treat 92:187–195

    Article  PubMed  CAS  Google Scholar 

  5. Schley PD, Brindley DN, Field CJ (2007) (n-3) PUFA alter raft lipid composition and decrease epidermal growth factor receptor levels in lipid rafts of human breast cancer cells. J Nutr 137:548–553

    PubMed  CAS  Google Scholar 

  6. Bernard-Gallon DJ, Vissac-Sabatier C, Antoine-Vincent D, Rio PG, Maurizis J-C, Fustier P, Bignon Y-J (2002) Differential effects of n-3 and n-6 polyunsaturated fatty acids on BRCA1 and BRCA2 gene expression in breast cell lines. Br J Nutr 87:281–289

    Article  PubMed  CAS  Google Scholar 

  7. Baumgartner M, Sturlan S, Roth E, Wessner B, Bachleitner-Hofmann T (2004) Enhancement of arsenic trioxide-mediated apoptosis using docosahexaenoic acid in arsenic trioxide-resistant solid tumor cells. Int J Cancer 112:707–712

    Article  PubMed  CAS  Google Scholar 

  8. Menendez JA, Ropero S, Mehmi I, Atlas E, Colomer R, Lupu R (2004) Overexpression and hyperactivity of breast cancer-associated fatty acid synthase (oncogenic antigen-519) is insensitive to normal arachidonic fatty acid-induced suppression in lipogenic tissues but it is selectively inhibited by tumoricidal alpha-linolenic and gamma-linolenic fatty acids: a novel mechanism by which dietary fat can alter mammary tumorigenesis. Int J Oncol 24:1369–1383

    PubMed  CAS  Google Scholar 

  9. Biondo PD, Brindley DN, Sawyer MB, Field CJ (2008) The potential for treatment with dietary long-chain polyunsaturated n-3 fatty acids during chemotherapy. J Nutr Biochem 19:787–796

    Article  PubMed  CAS  Google Scholar 

  10. Grammatikos SI, Subbaiah PV, Victor TA, Miller WM (1994) n-3 and n-6 fatty acid processing and growth effects in neoplastic and non-cancerous human mammary epithelial cell lines. Br J Cancer 70:219–227

    Article  PubMed  CAS  Google Scholar 

  11. Chajes V, Sattler W, Stranzl A, Kostner GM (1995) Influence of n-3 fatty acids on the growth of human breast cancer cells in vitro: relationship to peroxides and vitamin-E. Breast Cancer Res Treat 34:199–212

    Article  PubMed  CAS  Google Scholar 

  12. Begin ME, Ells G, Horrobin DF (1988) Polyunsaturated fatty acid-induced cytotoxicity against tumor cells and its relationship to lipid peroxidation. J Natl Cancer Inst 80:188–194

    Article  PubMed  CAS  Google Scholar 

  13. Yamamoto D, Kiyozuka Y, Adachi Y, Takada H, Hioki K, Tsubura A (1999) Synergistic action of apoptosis induced by eicosapentaenoic acid and TNP-470 on human breast cancer cells. Breast Cancer Res Treat 55:149–160

    Article  PubMed  CAS  Google Scholar 

  14. Tsujita-Kyutoku M, Yuri T, Danbara N, Senzaki H, Kiyozuka Y, Uehara N, Takada H, Hada T, Miyazawa T, Ogawa Y, Tsubura A (2004) Conjugated docosahexaenoic acid suppresses KPL-1 human breast cancer cell growth in vitro and in vivo: potential mechanisms of action. Breast Cancer Res 6:R291–R299

    Article  PubMed  CAS  Google Scholar 

  15. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  PubMed  CAS  Google Scholar 

  16. Shaw AS (2006) Lipid rafts: now you see them, now you don’t. Nat Immunol 7:1139–1142

    Article  PubMed  CAS  Google Scholar 

  17. Foster LJ, De Hoog CL, Mann M (2003) Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc Natl Acad Sci USA 100:5813–5818

    Article  PubMed  CAS  Google Scholar 

  18. Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    Article  PubMed  CAS  Google Scholar 

  19. Hatala MA, Rayburn J, Rose DP (1994) Comparison of linoleic acid and eicosapentaenoic acid incorporation into human breast cancer cells. Lipids 29:831–837

    Article  PubMed  CAS  Google Scholar 

  20. Rose DP, Connolly JM, Rayburn J, Coleman M (1995) Influence of diets containing eicosapentaenoic or docosahexaenoic acid on growth and metastasis of breast cancer cell in nude mice. J Natl Cancer Inst 87:587–592

    Article  PubMed  CAS  Google Scholar 

  21. Robinson LE, Clandinin MT, Field CJ (2002) The role of dietary long-chain n-3 fatty acids in anti-cancer immune defense and R3230AC mammary tumor growth in rats: influence of diet fat composition. Breast Cancer Res Treat 73:145–160

    Article  PubMed  CAS  Google Scholar 

  22. Rockett BD, Franklin A, Harris M, Teague H, Rockett A, Shaikh SR (2011) Membrane raft organization is more sensitive to disruption by (n-3) PUFA than nonraft organization in EL4 and B cells. J Nutr 141:1041–1048

    Article  PubMed  CAS  Google Scholar 

  23. Bougnoux P, Germain E, Chajes V, Hubert B, Lhuillery C, Le FO, Body G, Calais G (1999) Cytotoxic drugs efficacy correlates with adipose tissue docosahexaenoic acid level in locally advanced breast carcinoma. Br J Cancer 79:1765–1769

    Article  PubMed  CAS  Google Scholar 

  24. Bougnoux P, Hajjaji N, Ferrasson MN, Giraudeau B, Couet C, Le FO (2009) Improving outcome of chemotherapy of metastatic breast cancer by docosahexaenoic acid: a phase II trial. Br J Cancer 101:1978–1985

    Article  PubMed  CAS  Google Scholar 

  25. Siddiqui RA, Harvey KA, Xu Z, Bammerlin EM, Walker C, Altenburg JD (2011) Docosahexaenoic acid: a natural powerful adjuvant that improves efficacy for anticancer treatment with no adverse effects. BioFactors 37:399–412

    Article  PubMed  CAS  Google Scholar 

  26. Barnhart BC, Alappat EC, Peter ME (2003) The CD95 type I/type II model. Semin Immunol 15:185–193

    Article  PubMed  CAS  Google Scholar 

  27. Fulda S, Strauss G, Meyer E, Debatin KM (2000) Functional CD95 ligand and CD95 death-inducing signaling complex in activation-induced cell death and doxorubicin-induced apoptosis in leukemic T cells. Blood 95:301–308

    PubMed  CAS  Google Scholar 

  28. Bollinger CR, Teichgraber V, Gulbins E (2005) Ceramide-enriched membrane domains. Biochim Biophys Acta 1746:284–294

    Article  PubMed  CAS  Google Scholar 

  29. Kim HS, Lee YS, Kim DK (2009) Doxorubicin exerts cytotoxic effects through cell cycle arrest and Fas-mediated cell death. Pharmacology 84:300–309

    Article  PubMed  CAS  Google Scholar 

  30. Blanckaert V, Ulmann L, Mimouni V, Antol J, Brancquart L, Chenais B (2010) Docosahexaenoic acid intake decreases proliferation, increases apoptosis and decreases the invasive potential of the human breast carcinoma cell line MDA-MB-231. Int J Oncol 36:737–742

    Article  PubMed  CAS  Google Scholar 

  31. Patterson RE, Flatt SW, Newman VA, Natarajan L, Rock CL, Thomson CA, Caan BJ, Parker BA, Pierce JP (2011) Marine fatty acid intake is associated with breast cancer prognosis. J Nutr 141:201–206

    Article  PubMed  CAS  Google Scholar 

  32. Kang KS, Wang P, Yamabe N, Fukui M, Jay T, Zhu BT (2010) Docosahexaenoic acid induces apoptosis in MCF-7 cells in vitro and in vivo via reactive oxygen species formation and caspase 8 activation. PLoS One 5:e10296

    Article  PubMed  Google Scholar 

  33. Shaikh IA, Brown I, Schofield AC, Wahle KW, Heys SD (2008) Docosahexaenoic acid enhances the efficacy of docetaxel in prostate cancer cells by modulation of apoptosis: the role of genes associated with the NF-kappaB pathway. Prostate 68:1635–1646

    Article  PubMed  CAS  Google Scholar 

  34. Sawyer M, Field CJ (2010) Possible mechanisms for omega-3 (n-3) the anti-tumour action. In: Carviello G, Serini S (eds) Diet and Cancer. Springer, New York

    Google Scholar 

  35. Wendel M, Heller AR (2009) Anticancer actions of omega-3 fatty acids—current state and future perspectives. Anticancer Agents Med Chem 9:457–470

    PubMed  CAS  Google Scholar 

  36. Rickert RC, Jellusova J, Miletic AV (2011) Signaling by the tumor necrosis factor receptor superfamily in B-cell biology and disease. Immunol Rev 244:115–133

    Article  PubMed  CAS  Google Scholar 

  37. Grassme H, Jekle A, Riehle A, Schwarz H, Berger J, Sandhoff K, Kolesnick R, Gulbins E (2001) CD95 signaling via ceramide-rich membrane rafts. J Biol Chem 276:20589–20596

    Article  PubMed  CAS  Google Scholar 

  38. Blank N, Schiller M, Krienke S, Wabnitz G, Ho AD, Lorenz HM (2007) Cholera toxin binds to lipid rafts but has a limited specificity for ganglioside GM1. Immunol Cell Biol 85:378–382

    Article  PubMed  CAS  Google Scholar 

  39. Kenworthy AK, Petranova N, Edidin M (2000) High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol Biol Cell 11:1645–1655

    PubMed  CAS  Google Scholar 

  40. Shaikh SR, Rockett BD, Salameh M, Carraway K (2009) Docosahexaenoic acid modifies the clustering and size of lipid rafts and the lateral organization and surface expression of MHC class I of EL4 cells. J Nutr 139:1632–1639

    Article  PubMed  CAS  Google Scholar 

  41. Alquobaili F, Miller SA, Muhie S, Day A, Jett M, Hammamieh R (2010) Estrogen receptor-dependent genomic expression profiles in breast cancer cells in response to fatty acids. J Carcinog 8:17

    Article  PubMed  Google Scholar 

  42. Fan YY, Ly LH, Barhoumi R, McMurray DN, Chapkin RS (2004) Dietary docosahexaenoic acid suppresses T cell protein kinase C theta lipid raft recruitment and IL-2 production. J Immunol 173:6151–6160

    PubMed  CAS  Google Scholar 

  43. Altenburg JD, Siddiqui RA (2009) Omega-3 polyunsaturated fatty acids down-modulate CXCR4 expression and function in MDA-MB-231 breast cancer cells. Mol Cancer Res 7:1013–1020

    Article  PubMed  CAS  Google Scholar 

  44. Vibet S, Goupille C, Bougnoux P, Steghens JP, Gore J, Maheo K (2008) Sensitization by docosahexaenoic acid (DHA) of breast cancer cells to anthracyclines through loss of glutathione peroxidase (GPx1) response. Free Radic Biol Med 44:1483–1491

    Article  PubMed  CAS  Google Scholar 

  45. Ruth MR, Proctor SD, Field CJ (2009) Feeding long-chain n-3 polyunsaturated fatty acids to obese leptin receptor-deficient JCR:lA-cp rats modifies immune function and lipid-raft fatty acid composition. Br J Nutr 101:1341–1350

    Article  PubMed  CAS  Google Scholar 

  46. Carpinteiro A, Dumitru C, Schenck M, Gulbins E (2008) Ceramide-induced cell death in malignant cells. Cancer Lett 264:1–10

    Article  PubMed  CAS  Google Scholar 

  47. Ogretmen B, Hannun YA (2004) Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 4:604–616

    Article  PubMed  CAS  Google Scholar 

  48. Kawase M, Watanabe M, Kondo T, Yabu T, Taguchi Y, Umehara H, Uchiyama T, Mizuno K, Okazaki T (2002) Increase of ceramide in adriamycin-induced HL-60 cell apoptosis: detection by a novel anti-ceramide antibody. Biochim Biophys Acta 1584:104–114

    Article  PubMed  CAS  Google Scholar 

  49. Dawood S, Ueno NT, Valero V, Woodward WA, Buchholz TA, Hortobagyi GN, Gonzalez-Angulo AM, Cristofanilli M (2011) Identifying factors that impact survival among women with inflammatory breast cancer. Ann Oncol 23(4):870–875

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Study funding provided by the Canadian Institutes of Health Research (CIHR). J. Ewaschuk was a recipient of a CIHR post-doctoral fellowship.

Conflict of interest

The authors have no conflict of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine J. Field.

About this article

Cite this article

Ewaschuk, J.B., Newell, M. & Field, C.J. Docosahexanoic Acid Improves Chemotherapy Efficacy by Inducing CD95 Translocation to Lipid Rafts in ER Breast Cancer Cells. Lipids 47, 1019–1030 (2012). https://doi.org/10.1007/s11745-012-3717-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-012-3717-7

Keywords

Navigation