Skip to main content
Log in

Lipoic Acid Attenuates Innate Immune Infiltration and Activation in the Visceral Adipose Tissue of Obese Insulin Resistant Mice

  • Original Article
  • Published:
Lipids

Abstract

Visceral adipose inflammation mediated by innate and adaptive immune alterations plays a critical role in diet-induced obesity and insulin resistance (IR). The dietary supplement α-lipoic acid (αLA) has been shown to ameliorate inflammatory processes in macrophages, however the relative significance of these effects in the context of visceral adipose inflammation and IR remain unknown. In this study we investigated its effects via both intraperitoneal and oral administration in lean and obese transgenic mice expressing yellow fluorescent protein (YFP) under control of a monocyte specific promoter (c-fmsYFP+). αLA significantly improved indices of insulin-resistance concomitant with a decrease in total (YFP+CD11b+) and activated (YFP+CD11b+CD11c+) visceral adipose tissue macrophages. Histologically, the visceral adipose tissue of obese mice receiving αLA had fewer “crown-like structures,” a hallmark of adipose inflammation in murine obesity. Monocyte adhesion assessed by intravital microscopy of cremasteric venules was attenuated by αLA. In cultured WT and toll-like receptor 4 (TLR4) null primary mouse macrophages, αLA significantly decreased basal CCR-2, MCP-1 and TNF-α expression levels. LPS treatment resulted in increased TNFα, MCP-1, and IL-6 expression while αLA partially abrogated the LPS effect on MCP-1 and TNFα; Interestingly, CCR-2 was not coordinately regulated. AαLA prevented LPS-induced nuclear factor kappa B (NFκB) activation in the same cultured macrophages. These data suggest that αLA may modulate visceral adipose inflammation, a critical determinant of IR via TLR4 and NF-κB pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

αLA:

α-Lipoic acid

c-fms:

Proto-oncogene c-fms

CCR-2:

C-C chemokine receptor type 2

FBS:

Fetal bovine serum

HFD:

High fat diet

JNK:

c-Jun NH2-terminal kinase

IFNγ:

Interferon gamma

IL-6:

Interleukin 6

IL-10:

Interleukin 10

IL-12:

Interleukin 12

IP:

Intraperitoneal

IR:

Insulin resistance

LPS:

Lipopolysaccharide

MCP-1/CCL-2:

Monocyte chemoattractant protein 1

PBS:

Phosphate buffered saline

NFκB:

Nuclear factor kappa B

TBE:

Tris-buffered Ethylenediaminetetraacetic acid

TLR4:

Toll-like receptor 4

TNFα:

Tumor necrosis factor alpha

VATM:

Visceral adipose tissue macrophages

YFP:

Yellow fluorescent protein

SVF:

Stromal vascular fraction

References

  1. Harkins JM, Moustaid-Moussa N, Chung YJ, Penner KM, Pestka JJ, North CM, Claycombe KJ (2004) Expression of interleukin-6 is greater in preadipocytes than in adipocytes of 3T3–L1 cells and C57BL/6J and ob/ob mice. J Nutr 134:2673–2677

    PubMed  CAS  Google Scholar 

  2. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830

    PubMed  CAS  Google Scholar 

  3. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808

    PubMed  CAS  Google Scholar 

  4. Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117:175–184

    Article  PubMed  CAS  Google Scholar 

  5. Carey DG, Jenkins AB, Campbell LV, Freund J, Chisholm DJ (1996) Abdominal fat and insulin resistance in normal and overweight women: direct measurements reveal a strong relationship in subjects at both low and high risk of NIDDM. Diabetes 45:633–638

    Article  PubMed  CAS  Google Scholar 

  6. Cnop M, Landchild MJ, Vidal J, Havel PJ, Knowles NG, Carr DR, Wang F, Hull RL, Boyko EJ, Retzlaff BM, Walden CE, Knopp RH, Kahn SE (2002) The concurrent accumulation of intra-abdominal and subcutaneous fat explains the association between insulin resistance and plasma leptin concentrations: distinct metabolic effects of two fat compartments. Diabetes 51:1005–1015

    Article  PubMed  CAS  Google Scholar 

  7. Maeda K, Okubo K, Shimomura I, Mizuno K, Matsuzawa Y, Matsubara K (1997) Analysis of an expression profile of genes in the human adipose tissue. Gene 190:227–235

    Article  PubMed  CAS  Google Scholar 

  8. Motoshima H, Wu X, Sinha MK, Hardy VE, Rosato EL, Barbot DJ, Rosato FE, Goldstein BJ (2002) Differential regulation of adiponectin secretion from cultured human omental and subcutaneous adipocytes: effects of insulin and rosiglitazone. J Clin Endocrinol Metab 87:5662–5667

    Article  PubMed  CAS  Google Scholar 

  9. Scherer PE (2006) Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes 55:1537–1545

    Article  PubMed  CAS  Google Scholar 

  10. Shoelson SE, Lee J, Goldfine AB (2006) Inflammation and insulin resistance. J Clin Invest 116:1793–1801

    Article  PubMed  CAS  Google Scholar 

  11. Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115:1111–1119

    PubMed  CAS  Google Scholar 

  12. Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW (2004) Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology 145:2273–2282

    Article  PubMed  CAS  Google Scholar 

  13. Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, Charo I, Leibel RL, Ferrante AW Jr (2006) CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 116:115–124

    Article  PubMed  CAS  Google Scholar 

  14. Wu H, Ghosh S, Perrard XD, Feng L, Garcia GE, Perrard JL, Sweeney JF, Peterson LE, Chan L, Smith CW, Ballantyne CM (2007) T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation 115:1029–1038

    Article  PubMed  CAS  Google Scholar 

  15. Hauner H (2005) Secretory factors from human adipose tissue and their functional role. Proc Nutr Soc 64:163–169

    Article  PubMed  CAS  Google Scholar 

  16. Sethi JK, Vidal-Puig AJ (2007) Thematic review series: adipocyte biology adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res 48:1253–1262

    Article  PubMed  CAS  Google Scholar 

  17. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS (1997) Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 389:610–614

    Article  PubMed  CAS  Google Scholar 

  18. Kim F, Pham M, Luttrell I, Bannerman DD, Tupper J, Thaler J, Hawn TR, Raines EW, Schwartz MW (2007) Toll-like receptor-4 mediates vascular inflammation and insulin resistance in diet-induced obesity. Circ Res 100:1589–1596

    Article  PubMed  CAS  Google Scholar 

  19. Kopp A, Buechler C, Neumeier M, Weigert J, Aslanidis C, Scholmerich J, Schaffler A (2009) Innate immunity and adipocyte function: ligand-specific activation of multiple Toll-like receptors modulates cytokine, adipokine, and chemokine secretion in adipocytes. Obesity (Silver Spring) 17:648–656

    Article  CAS  Google Scholar 

  20. Nguyen MT, Favelyukis S, Nguyen AK, Reichart D, Scott PA, Jenn A, Liu-Bryan R, Glass CK, Neels JG, Olefsky JM (2007) A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J Biol Chem 282:35279–35292

    Article  PubMed  CAS  Google Scholar 

  21. Oliveira AG, Carvalho BM, Tobar N, Ropelle ER, Pauli JR, Bagarolli RA, Guadagnini D, Carvalheira JB, Saad MJ (2011) Physical exercise reduces circulating lipopolysaccharide and Toll-like receptor 4 activation and improves insulin signaling in tissues of diet-induced obesity rats. Diabetes 60:784–796

    Google Scholar 

  22. Song MJ, Kim KH, Yoon JM, Kim JB (2006) Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes. Biochem Biophys Res Commun 346:739–745

    Article  PubMed  CAS  Google Scholar 

  23. Merry BJ, Kirk AJ, Goyns MH (2008) Dietary lipoic acid supplementation can mimic or block the effect of dietary restriction on life span. Mech Ageing Dev 129:341–348

    Article  PubMed  CAS  Google Scholar 

  24. Butler JA, Hagen TM, Moreau R (2009) Lipoic acid improves hypertriglyceridemia by stimulating triacylglycerol clearance and downregulating liver triacylglycerol secretion. Arch Biochem Biophys 485:63–71

    Article  PubMed  CAS  Google Scholar 

  25. Lee WJ, Song KH, Koh EH, Won JC, Kim HS, Park HS, Kim MS, Kim SW, Lee KU, Park JY (2005) Alpha-lipoic acid increases insulin sensitivity by activating AMPK in skeletal muscle. Biochem Biophys Res Commun 332:885–891

    Article  PubMed  CAS  Google Scholar 

  26. Lee HA, Hughes DA (2002) Alpha-lipoic acid modulates NF-kappaB activity in human monocytic cells by direct interaction with DNA. Exp Gerontol 37:401–410

    Article  PubMed  CAS  Google Scholar 

  27. Sasmono RT, Oceandy D, Pollard JW, Tong W, Pavli P, Wainwright BJ, Ostrowski MC, Himes SR, Hume DA (2003) A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101:1155–1163

    Article  PubMed  CAS  Google Scholar 

  28. Yi X, Maeda N (2006) alpha-Lipoic acid prevents the increase in atherosclerosis induced by diabetes in apolipoprotein E-deficient mice fed high-fat/low-cholesterol diet. Diabetes 55:2238–2244

    Article  PubMed  CAS  Google Scholar 

  29. Yadav V, Marracci GH, Munar MY, Cherala G, Stuber LE, Alvarez L, Shinto L, Koop DR, Bourdette DN (2010) Pharmacokinetic study of lipoic acid in multiple sclerosis: comparing mice and human pharmacokinetic parameters. Mult Scler 16:387–397

    Article  PubMed  CAS  Google Scholar 

  30. Carlson DA, Smith AR, Fischer SJ, Young KL, Packer L (2007) The plasma pharmacokinetics of R-(+)-lipoic acid administered as sodium R-(+)-lipoate to healthy human subjects. Altern Med Rev 12:343–351

    PubMed  Google Scholar 

  31. Teichert J, Kern J, Tritschler HJ, Ulrich H, Preiss R (1998) Investigations on the pharmacokinetics of alpha-lipoic acid in healthy volunteers. Int J Clin Pharmacol Ther 36:625–628

    PubMed  CAS  Google Scholar 

  32. Breithaupt-Grogler K, Niebch G, Schneider E, Erb K, Hermann R, Blume HH, Schug BS, Belz GG (1999) Dose-proportionality of oral thioctic acid–coincidence of assessments via pooled plasma and individual data. Eur J Pharm Sci 8:57–65

    Article  PubMed  CAS  Google Scholar 

  33. Deiuliis JA, Shin J, Bae D, Azain MJ, Barb R, Lee K (2008) Developmental, hormonal, and nutritional regulation of porcine adipose triglyceride lipase (ATGL). Lipids 43:215–225

    Article  PubMed  CAS  Google Scholar 

  34. Nishimura S, Manabe I, Nagasaki M, Hosoya Y, Yamashita H, Fujita H, Ohsugi M, Tobe K, Kadowaki T, Nagai R, Sugiura S (2007) Adipogenesis in obesity requires close interplay between differentiating adipocytes, stromal cells, and blood vessels. Diabetes 56:1517–1526

    Article  PubMed  CAS  Google Scholar 

  35. Lim LH, Bochner BS, Wagner EM (2002) Leukocyte recruitment in the airways: an intravital microscopic study of rat tracheal microcirculation. Am J Physiol Lung Cell Mol Physiol 282:L959–L967

    PubMed  CAS  Google Scholar 

  36. Harrison EH, McCormick DB (1974) The metabolism of dl-(1,6-14C)lipoic acid in the rat. Arch Biochem Biophys 160:514–522

    Article  PubMed  CAS  Google Scholar 

  37. Jones W, Li X, Qu ZC, Perriott L, Whitesell RR, May JM (2002) Uptake, recycling, and antioxidant actions of alpha-lipoic acid in endothelial cells. Free Radic Biol Med 33:83–93

    Article  PubMed  CAS  Google Scholar 

  38. Zhang WJ, Wei H, Hagen T, Frei B (2007) Alpha-lipoic acid attenuates LPS-induced inflammatory responses by activating the phosphoinositide 3-kinase/Akt signaling pathway. Proc Natl Acad Sci USA 104:4077–4082

    Article  PubMed  CAS  Google Scholar 

  39. Lee CK, Lee EY, Kim YG, Mun SH, Moon HB, Yoo B (2008) Alpha-lipoic acid inhibits TNF-alpha induced NF-kappa B activation through blocking of MEKK1-MKK4-IKK signaling cascades. Int Immunopharmacol 8:362–370

    Article  PubMed  CAS  Google Scholar 

  40. Sung MJ, Kim W, Ahn SY, Cho CH, Koh GY, Moon SO, Kim DH, Lee S, Kang KP, Jang KY, Park SK (2005) Protective effect of alpha-lipoic acid in lipopolysaccharide-induced endothelial fractalkine expression. Circ Res 97:880–890

    Article  PubMed  CAS  Google Scholar 

  41. Cheshire JL, Baldwin AS Jr (1997) Synergistic activation of NF-kappaB by tumor necrosis factor alpha and gamma interferon via enhanced I kappaB alpha degradation and de novo I kappaB beta degradation. Mol Cell Biol 17:6746–6754

    PubMed  CAS  Google Scholar 

  42. Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS Jr (1999) NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol 19:5785–5799

    PubMed  CAS  Google Scholar 

  43. Murano I, Barbatelli G, Parisani V, Latini C, Muzzonigro G, Castellucci M, Cinti S (2008) Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. J Lipid Res 49:1562–1568

    Article  PubMed  CAS  Google Scholar 

  44. Muroi M, Suzuki T (1993) Role of protein kinase A in LPS-induced activation of NF-kappa B proteins of a mouse macrophage-like cell line, J774. Cell Signal 5:289–298

    Article  PubMed  CAS  Google Scholar 

  45. Strissel KJ, Stancheva Z, Miyoshi H, Perfield JW, 2nd, Defuria J, Jick Z, Greenberg AS, Obin MS (2007) Adipocyte death, adipose tissue remodeling and obesity complications. Diabetes 56:2910–2918

    Google Scholar 

  46. Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, Wang S, Fortier M, Greenberg AS, Obin MS (2005) Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 46:2347–2355

    Article  PubMed  CAS  Google Scholar 

  47. Kim MS, Park JY, Namkoong C, Jang PG, Ryu JW, Song HS, Yun JY, Namgoong IS, Ha J, Park IS, Lee IK, Viollet B, Youn JH, Lee HK, Lee KU (2004) Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat Med 10:727–733

    Article  PubMed  CAS  Google Scholar 

  48. Manning PJ, Sutherland WH, Walker RJ, Williams SM, De Jong SA, Ryalls AR, Berry EA (2004) Effect of high-dose vitamin E on insulin resistance and associated parameters in overweight subjects. Diabetes Care 27:2166–2171

    Article  PubMed  CAS  Google Scholar 

  49. Charo IF (2007) Macrophage polarization and insulin resistance: PPARgamma in control. Cell Metab 6:96–98

    Article  PubMed  CAS  Google Scholar 

  50. Ghanim H, Abuaysheh S, Sia CL, Korzeniewski K, Chaudhuri A, Fernandez-Real JM, Dandona P (2009) Increase in plasma endotoxin concentrations and the expression of Toll-like receptors and suppressor of cytokine signaling-3 in mononuclear cells after a high-fat, high-carbohydrate meal: implications for insulin resistance. Diabetes Care 32:2281–2287

    Article  PubMed  CAS  Google Scholar 

  51. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57:1470–1481

    Article  PubMed  CAS  Google Scholar 

  52. Bunn RC, Cockrell GE, Ou Y, Thrailkill KM, Lumpkin CK Jr, Fowlkes JL (2010) Palmitate and insulin synergistically induce IL-6 expression in human monocytes. Cardiovasc Diabetol 9:73

    Article  PubMed  Google Scholar 

  53. Quan Y, Jiang CT, Xue B, Zhu SG, Wang X (2011) High glucose stimulates TNFalpha and MCP-1 expression in rat microglia via ROS and NF-kappaB pathways. Acta Pharmacol Sin 32:188–193

    Article  PubMed  CAS  Google Scholar 

  54. Yang WS, Seo JW, Han NJ, Choi J, Lee KU, Ahn H, Lee SK, Park SK (2008) High glucose-induced NF-kappaB activation occurs via tyrosine phosphorylation of IkappaBalpha in human glomerular endothelial cells: involvement of Syk tyrosine kinase. Am J Physiol Renal Physiol 294:F1065–F1075

    Article  PubMed  CAS  Google Scholar 

  55. Konrad T, Vicini P, Kusterer K, Hoflich A, Assadkhani A, Bohles HJ, Sewell A, Tritschler HJ, Cobelli C, Usadel KH (1999) alpha-Lipoic acid treatment decreases serum lactate and pyruvate concentrations and improves glucose effectiveness in lean and obese patients with type 2 diabetes. Diabetes Care 22:280–287

    Article  PubMed  CAS  Google Scholar 

  56. Suh JH, Shenvi SV, Dixon BM, Liu H, Jaiswal AK, Liu RM, Hagen TM (2004) Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc Natl Acad Sci USA 101:3381–3386

    Article  PubMed  CAS  Google Scholar 

  57. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322

    Article  PubMed  CAS  Google Scholar 

  58. Venugopal R, Jaiswal AK (1996) Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proc Natl Acad Sci USA 93:14960–14965

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The primary author was supported by Award Number F32DK083903 from the National Institute of Diabetes and Digestive and Kidney Diseases. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Diabetes and Digestive and Kidney Diseases or the National Institutes of Health. The research was also supported in part by Grants to Dr Rajagopalan: R01ES015146, R21DK088522, and R21HL106487.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Deiuliis.

About this article

Cite this article

Deiuliis, J.A., Kampfrath, T., Ying, Z. et al. Lipoic Acid Attenuates Innate Immune Infiltration and Activation in the Visceral Adipose Tissue of Obese Insulin Resistant Mice. Lipids 46, 1021–1032 (2011). https://doi.org/10.1007/s11745-011-3603-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-011-3603-8

Keywords

Navigation