Skip to main content
Log in

Fast and Minimally Invasive Determination of the Unsaturation Index of White Fat Depots by Micro-Raman Spectroscopy

  • Methods
  • Published:
Lipids

Abstract

In the last 20 years increasing interest has been devoted to the investigation of white adipose tissue (WAT) because hypo- or hyperfunction of WAT is involved in the pathogenesis of obesity and other pathologies. The investigation and discrimination of different characteristics in adipose tissues by means of spectroscopic techniques appears as a topic of current interest, also in view of possible medical–technological applications. The aim of this work was to establish micro-Raman spectroscopy as a tool for the characterization of mammals fat tissue. After preliminary tests aimed at defining a suitable sample preparation protocol, Raman spectra of WAT specimens excised from mice of different ages were recorded in the energy range 750–3,350 cm−1. Quantitative values of the unsaturation index were obtained through the calibration with HR-NMR spectra of lipid extracts. Raman spectroscopy detected a sharp increase in the unsaturation index between 22 and 30 days of age in close correspondence with the weaning of mice (21 days). The present results show that Raman spectroscopy is an inexpensive, fast and robust technique to analyze the unsaturation index of mammals fat tissues that could be routinely used in bioptic samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BAT:

Brown adipose tissue

CCD:

Charge coupled device

EEC:

European Community Council

FA:

Fatty acid(s)

FAME:

Fatty acids methyl ester(s)

FVB/NHsd:

Friend virus B/derived from breeding nucleus obtained from National Institutes of Health, Bethesda in 1988

HR-NMR:

High-resolution nuclear magnetic resonance

LCModel:

Linear combination of model

MCL:

Mean chain length

µl:

Micro-liters

mRNA:

Messenger ribonucleic acid

MRS:

Magnetic resonance spectroscopy

NA:

Normalized area

NEX:

Number of excitations

NIH:

National Institute of Health

NMR:

Nuclear magnetic resonance

PI:

Polyunsaturation index

ppm:

Part per million

PRESS:

Point resolved spectroscopy

TE:

Time echo

TG:

Triglyceride(s)

TR:

Time repetition

TXI:

Triple-resonance inverse

UI:

Unsaturation index

VOI:

Volume-of-interest

WAT:

White adipose tissue

References

  1. Bartnessand TJ, Bamshad M (1998) Innervation of mammalian white adipose tissue: implications for the regulation of total body fat. Am J Physiol 275:1399–1411

    Google Scholar 

  2. Nnodimand JO, Lever JD (1988) Neural and vascular provisions of rat interscapular brown adipose tissue. Am J Anat 182:283–293

    Article  Google Scholar 

  3. Vázquez-Vela MEF, Torres N, Tovar AR (2008) White adipose tissue as endocrine organ and its role in obesity. Arch Med Res 39:715–728

    Article  PubMed  Google Scholar 

  4. Cinti S (1999) The adipose organ, Kurtis, Milan

  5. Morrison RF, Farmer SR (2000) Hormonal signaling and transcriptional control of adipocyte differentiation. J Nutr 130:3116S–3121S

    PubMed  CAS  Google Scholar 

  6. Rousseau V, Becker DJ, Ongemba LN, Rahier J, Henquin JC, Brichard SM (1997) Developmental and nutritional changes of ob and PPAR gamma 2 gene expression in rat white adipose tissue. Biochem J 321:451–456

    PubMed  CAS  Google Scholar 

  7. Nogalska A, Swierczynski J (2001) The age-related differences in obese and fatty acid synthase gene expression in white adipose tissue of rat. Biochim Biophys Acta 1533:73–80

    PubMed  CAS  Google Scholar 

  8. Hunter JD, Buchanan H, Nye ER (1970) The mobilization of free fatty acids in relation to adipose tissue triglyceride fatty acids in the rat. J Lipid Res 11:259–265

    PubMed  CAS  Google Scholar 

  9. Raclot T, Groscolas R (1993) Differential mobilization of white adipose tissue fatty acids according to chain length, unsaturation, and positional isomerism. J Lipid Res 34:1515–1526

    PubMed  CAS  Google Scholar 

  10. Sanderson P, Thies F, Calder PC (2000) Extracellular release of free fatty acids by rat T lymphocytes is stimulus-dependent and is affected by dietary lipid manipulation. Cell Biochem Funct 18:47–58

    Article  PubMed  CAS  Google Scholar 

  11. Raclot T, Oudart H (2000) Net release of individual fatty acids from white adipose tissue during lipolysis in vitro: evidence for selective fatty acid re-uptake. Biochem J 348:129–136

    Article  PubMed  CAS  Google Scholar 

  12. Hailiwell KJ, Fielding BA, Samra JS, Humphreys SM, Frayn KN (1996) Release of individual fatty acids from human adipose tissue in vivo after an overnight fast. J Lipid Res 37:1842–1848

    Google Scholar 

  13. Lin DS, Connor WE (1990) Are the n-3 fatty acids from dietary fish oil deposited in the triglyceride stores of adipose tissue? Am J Clin Nutrition 51:535–539

    CAS  Google Scholar 

  14. Price ER, Krokfors A, Guglielmo CG (2008) Selective mobilization of fatty acids from adipose tissue in migratory birds. J Exp Biol 211:29–34

    Article  PubMed  CAS  Google Scholar 

  15. Yli-Jama P, Haugen TS, Rebnord HM, Ringstad J, Pedersen JI (2001) Selective mobilisation of fatty acids from human adipose tissue. Eur J Intern Med 12:107–115

    Article  PubMed  CAS  Google Scholar 

  16. Notingher I, Hench LL (2006) Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vitro. Expert Rev Med Devices 3:215–234

    Article  PubMed  CAS  Google Scholar 

  17. De Gelder J, De Gussem K, Vandenabeele P, Moens L (2007) Reference database of Raman spectra of biological molecules. J Raman Spectrosc 38:1133–1147

    Article  Google Scholar 

  18. Beattie JR, Bell SEJ, Borgaard C, Fearon A, Moss BW (2006) Prediction of adipose tissue composition using Raman spectroscopy: average properties and individual fatty acids. Lipids 41:287–294

    Article  PubMed  CAS  Google Scholar 

  19. Beattie JR, Bell SEJ, Borggaard C, Fearon AM, Moss BW (2007) Classification of adipose tissue species using Raman spectroscopy. Lipids 42:679–685

    Article  PubMed  CAS  Google Scholar 

  20. Beattie JR, Bell SJ, Moss BW (2004) A critical evaluation of Raman spectroscopy for the analysis of lipids: fatty acid methyl esters. Lipids 39:407–419

    Article  PubMed  CAS  Google Scholar 

  21. Olsen EF, Baustad C, Egelandsdal B, Rukke EO, Isaksson T (2010) Long-term stability of a Raman instrument determining iodine value in pork adipose tissue. Meat Sci 85:1–6

    Article  PubMed  CAS  Google Scholar 

  22. Olsen EF, Rukke EO, Flatten A, Isaksson T (2007) Quantitative determination of saturated-, monounsaturated- and polyunsaturated fatty acids in pork adipose tissue with non-destructive Raman spectroscopy. Meat Sci 76:628–634

    Article  CAS  Google Scholar 

  23. Farhad SFU, Abedin KM, Islam MR, Talukder AI, Haider AFMY (2009) Determination of ratio of unsaturated to total fatty acids in edible oils by laser Raman spectroscopy. J Appl Sci 9:1538–1543

    Article  CAS  Google Scholar 

  24. Muik B, Lendl B, Molina-Dìaz A, Ayora-Cañada MJ (2003) Direct, reagent-free determination of free fatty acid content in olive oil and olives by Fourier transform Raman spectrometry. Anal Chim Acta 487:211–220

    Article  CAS  Google Scholar 

  25. Tandon P, Förster G, Neubert R, Wartewig S (2000) Phase transitions in oleic acid as studied by X-ray diffraction and FT-Raman spectroscopy. J Mol Struct 524:201–215

    Article  CAS  Google Scholar 

  26. Afseth NK, Wold JP, Segtan VH (2006) The potential use of Raman spectroscopy for characterisation of the fatty acid unsaturation of salmon. Anal Chim Acta 572:85–92

    Article  PubMed  CAS  Google Scholar 

  27. Strobel K, van den Hoff J, Pietzsch J (2008) Localized proton magnetic resonance spectroscopy of lipids in adipose tissue at high spatial resolution in mice in vivo. J Lipid Res 49:473–480

    Article  PubMed  CAS  Google Scholar 

  28. Giarola M, Guella G, Mariotto G, Monti F, Rossi B, Sanson A, Sbarbati A (2008) Vibrational and structural investigations on adipose tissues. Phil Mag 88:3953–3959

    Article  CAS  Google Scholar 

  29. Folch J, Ascoli I, Lees M, Meath JA, LeBaron FN (1951) Preparation of lipid extracts from brain tissue. J Biol Chem 191:833–841

    PubMed  CAS  Google Scholar 

  30. Provencher SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14:260–264

    Article  PubMed  CAS  Google Scholar 

  31. Zancanaro C, Nano R, Marchioro C, Sbarbati A, Boicelli A, Osculati F (1994) Magnetic resonance spectroscopy investigations of brown adipose tissue and isolated brown adipocytes. J Lipid Res 35:2191–2199

    PubMed  CAS  Google Scholar 

  32. Socrates G (2001) Infrared and Raman characteristic group frequencies. J Wiley and Sons, NY

    Google Scholar 

  33. Brown KG, Bicknell-Brown E, Ladjadj M (1987) Raman active bands sensitive to motion and conformation at the chain termini and backbones of alkalenes and lipids. J Phys Chem 91:3436–3442

    Article  CAS  Google Scholar 

  34. Susi H, Sampugna J, Hampson JW, Ard JS (1979) Laser-Raman investigation of phospholipid-polypeptide interactions in model membranes. Biochemistry 18:297–301

    Article  PubMed  CAS  Google Scholar 

  35. Lawson EE, Anigbogu ANC, Williams AC, Barry BW, Edwards HGM (1998) Thermally induced molecular disorder in human stratum corneum lipids compared with a model phospholipid system; FT-Raman spectroscopy. Spectrochim. Acta A: Mol Biomol Spectros 54:543–558

    Article  Google Scholar 

  36. Snyder RG, Cameron DG, Casal HL, Compton DAC, Mantsch HH (1982) Studies on determining conformational order in n-alkanes and phospholipids from the 1,130 cm−1 Raman band. Biochim Biophys Acta 684:111–116

    Article  CAS  Google Scholar 

  37. Butler M, Salem N, Hoss W, Spoonhower J (1979) Raman spectral analysis of the 1,300 cm−1 region for lipid and membrane studies. Chem Phys Lipids 29:99–102

    Article  Google Scholar 

  38. Sadeghi-Jorabchi H, Hendra PJ, Wilson RH, Belton PS (1990) Determination of the total unsaturation in oils and fats by Fourier transform Raman spectroscopy. J Am Oil Chem Soc 67:483–486

    Article  CAS  Google Scholar 

  39. Chmielarz B, Bajdor K, Labudzinska A, Klukowska-Majewska Z (1995) Studies on the double-bond positional isomerization process in linseed oil by UV, IR and Raman-spectroscopy. J Mol Struct 348:313–316

    Article  CAS  Google Scholar 

  40. da Silva CE, Vandenabeele P, Edwuards HGM, de Oliveir LFC (2008) NIR-FT-Raman spectroscopic analitica characterization of the fruits, seeds, and phytotherapeutic oils from roseships. Anal Bioanal Chem 392:1489–1496

    Article  PubMed  CAS  Google Scholar 

  41. Capelle F, Lhert F, Blaudez D, Kellay H, Turlet HL (2000) Thickness and organization of black films using confocal micro-raman spectroscopy. Colloids Surf A: Physicochem Eng Asp 171:199–205

    Article  CAS  Google Scholar 

  42. Antipolphan R, Rades T, Strachan CJ, Gordon KC, Medlicott NJ (2006) Analysis of lecithin-choelsterol mixtures using Raman spectroscopy. J Pharma Biomed Anal 41:476–484

    Article  Google Scholar 

  43. Muik B, Lendl B, Molina-Dìaz A, Ayora-Canada MJ (2005) Direct monitoring of lipid oxidation in edible oils by Fourier transform Raman spectroscopy. Chem Phys Lipids 134:173–182

    Article  PubMed  CAS  Google Scholar 

  44. Oakes RE, Beattie JR, Moss BW, Bell SEJ (2003) DFT studies of long-chain FAMEs: theoretical justification for determining chain length and unsaturation from experimental Raman spectra. J Mol Structure Theochem 626:27–45

    Article  CAS  Google Scholar 

  45. Beattie JR, Bell SEJ, Borgaard C, Fearon AM, Moss BW (2004) Multivariate prediction of clarified butter composition using Raman spectroscopy. Lipids 39:897–906

    Article  PubMed  CAS  Google Scholar 

  46. Wood JD, Enser M, Fisher AV, Nute GR, Richardson RI, Sheard PR (1999) Manipulating meat quality and composition. Proc Nutr Soc 58:363–370

    Article  PubMed  CAS  Google Scholar 

  47. Hebean V, Habeanu M, Neagu M (2005) Influence of teh unsaturation fatty acids from different sources on pig meat quality. Arch Zootech 8:79–86

    Google Scholar 

  48. Lin DS, Connor WE, Spenler CW (1993) Are dietary saturated, monounsaturated, and polyunsaturated fatty acids deposited to the same extent in adipose tissue of rabbits? Am J Clin Nutr 58:174–179

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to G. Guella for the useful discussions and the critical reading of the manuscript. One of the authors (E. M.) is a Ph.D. student supported by Veneto Nanotech S.C.p.A., Italy. This research was partially funded by the Fondazione Cariverona, Italy, under contract with the University of Verona.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mariotto.

About this article

Cite this article

Giarola, M., Rossi, B., Mosconi, E. et al. Fast and Minimally Invasive Determination of the Unsaturation Index of White Fat Depots by Micro-Raman Spectroscopy. Lipids 46, 659–667 (2011). https://doi.org/10.1007/s11745-011-3567-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-011-3567-8

Keywords

Navigation