Skip to main content
Log in

γ-Tocotrienol Reduces Squalene Hydroperoxide-Induced Inflammatory Responses in HaCaT Keratinocytes

  • Original Article
  • Published:
Lipids

Abstract

Squalene hydroperoxide (SQ-OOH), the primary peroxidation product of squalene (SQ), accumulates at the surface of sunlight-exposed human skin. There are however only a few studies on the pathogenic actions (i.e., inflammatory stimuli) of SQ-OOH. Here, we evaluated whether SQ-OOH induced inflammatory responses in immortalized human keratinocytes (HaCaT). We found that SQ-OOH caused an increase in the expression of inflammatory genes such as the interleukins as well as cyclooxygenase-2 (COX-2). In concordance with the upregulation of COX-2 mRNA, SQ-OOH enhanced reactive oxygen species generation, nuclear factor kappa B activation, COX-2 protein expression, and prostaglandin E2 production. Therefore, the pro-inflammatory effects of SQ-OOH may be mediated in part via COX-2. On the other hand, γ-tocotrienol (γ-T3, an unsaturated form of vitamin E) was found to ameliorate the SQ-OOH actions. These results suggest that SQ-OOH induces inflammatory responses in HaCaT, implying that SQ-OOH plays an important role in inflammatory skin disorders. As a preventive strategy, inflammation could be reduced via the use of γ-T3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

COX-2:

Cyclooxygenase-2

DCDHF:

2,7-Dichlorodihydrofluorescein

DMEM:

Dulbecco’s modified Eagle medium

FBS:

Fetal bovine serum

HaCaT:

Human keratinocytes

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

NF-κB:

Nuclear factor kappa B

PGE2:

Prostaglandin E2

SQ:

Squalene

SQ-OOH:

Squalene hydroperoxide

ROS:

Reactive oxygen species

T3:

Tocotrienol

TNF-α:

Tumor necrosis factor-α

UV:

Ultraviolet

References

  1. Ramasastry P, Downing DT, Pochi PE, Strauss JS (1970) Chemical composition of human skin surface lipids from birth to puberty. J Invest Dermatol 54:139–144

    Article  CAS  PubMed  Google Scholar 

  2. Bruls WA, Van Weedlden H, Van der Leun JC (1984) Transmission of UV-radiation through human epidermal layers as a factor influencing the minimal erythema dose. Photochem Photobiol 39:63–67

    Article  CAS  PubMed  Google Scholar 

  3. Fujita H, Matsuo I, Okazaki M, Yoshino K, Ohkido M (1986) Chlorpromazine-sensitized photooxidation of squalene. Arch Dermatol Res 278:224–227

    Article  CAS  PubMed  Google Scholar 

  4. Miyazawa T, Yasuda K, Fujimoto K, Kaneda T (1988) Presence of phosphatidylcholine hydroperoxide in human plasma. J Biochem 103:744–746

    CAS  PubMed  Google Scholar 

  5. Miyazawa T (1989) Determination of phospholipid hydroperoxides in human blood plasma by a chemiluminescence-HPLC assay. Free Radic Biol Med 7:209–217

    Article  CAS  PubMed  Google Scholar 

  6. Miyazawa T, Suzuki T, Fujimoto K, Yasuda K (1992) Chemiluminescent simultaneous determination of phosphatidylcholine hydroperoxide and phosphatidylethanolamine hydroperoxide in the liver and brain of the rat. J Lipid Res 33:1051–1059

    CAS  PubMed  Google Scholar 

  7. Miyazawa T, Fujimoto K, Suzuki T, Yasuda K (1994) Determination of phospholipid hydroperoxides using luminol chemiluminescence-high-performance liquid chromatography. Methods Enzymol 233:324–332

    Article  CAS  PubMed  Google Scholar 

  8. Kinoshita M, Oikawa S, Hayasaka K, Sekikawa A, Nagashima T, Toyota T, Miyazawa T (2000) Age-related increase in plasma phosphatidylcholine hydroperoxide concentrations in normal subjects and patients with hyperlipidemia. Clin Chem 46:822–828

    CAS  PubMed  Google Scholar 

  9. Kohno Y, Sakamoto O, Tomita K, Horii I, Miyazawa T (1991) Determination of human skin surface lipid peroxides by chemiluminescence-HPLC. J Jpn Oil Chem Soc 40:715–718

    CAS  Google Scholar 

  10. Kohno Y, Sakamoto O, Nakamura T, Miyazawa T (1993) Determination of human skin surface lipid peroxides by chemiluminescence-HPLC. II. Detection of squalene hydroperoxide. J Jpn Oil Chem Soc 42:204–209

    CAS  Google Scholar 

  11. Kohno Y, Takahashi M (1995) Peroxidation in human skin and its prevention. J Jpn Oil Chem Soc 44:10–17

    CAS  Google Scholar 

  12. Maes D, Mammone T, McKeever MA, Pelle E, Fthenakis C, Declercq L, Giacomoni PU, Marenus K (2000) Noninvasive techniques for measuring oxidation products on the surface of human skin. Methods Enzymol 319:612–622

    Article  CAS  PubMed  Google Scholar 

  13. Mudiyanselage SE, Hamburger M, Elsner P, Thiele JJ (2003) Ultraviolet A induces generation of squalene monohydroperoxide isomers in human sebum and skin surface lipids in vitro and in vivo. J Invest Dermatol 120:915–922

    Article  CAS  Google Scholar 

  14. Nakagawa K, Ibusuki D, Suzuki Y, Yamashita S, Higuchi O, Oikawa S, Miyazawa T (2007) Ion-trap tandem mass spectrometric analysis of squalene monohydroperoxide isomers in sunlight-exposed human skin. J Lipid Res 48:2779–2787

    Article  CAS  PubMed  Google Scholar 

  15. Ohsawa K, Watanabe T, Matsukawa R, Yoshimura Y, Imaeda K (1984) The possible role of squalene and its peroxide of the sebum in the occurrence of sunburn and protection from the damage caused by UV irradiation. J Toxicol Sci 9:151–159

    CAS  PubMed  Google Scholar 

  16. Saint-Leger D, Baque A, Cohen E, Chivo M (1986) A possible role for squalene in the pathogenesis of acne. II. Br J Derm 114:535–552

    Article  CAS  Google Scholar 

  17. Picardo M, Zompetta C, De Luca C, Cirone M, Faggioni A, Nazzaro-Porro M, Passi S, Prota G (1991) Role of skin surface lipids in UV-induced epidermal cell changes. Arch Dermatol Res 283:191–197

    Article  CAS  PubMed  Google Scholar 

  18. Chiba K, Yoshizawa K, Makino I, Kawakami K, Onoue M (2000) Comedogenicity of squalene monohydroperoxide in the skin after topical application. J Toxicol Sci 25:77–83

    CAS  PubMed  Google Scholar 

  19. Chiba K, Yoshizawa K, Makino I, Kawakami K, Onoue M (2001) Changes in the levels of glutathione after cellular and cutaneous damage induced by squalene monohydroperoxide. J Biochem Mol Toxicol 15:150–158

    Article  CAS  PubMed  Google Scholar 

  20. Uchino T, Tokunaga H, Onodera H, Ando M (2002) Effect of squalene monohydroperoxide on cytotoxicity and cytokine release in a three-dimensional human skin model and human. Biol Pharm Bull 25:605–610

    Article  CAS  PubMed  Google Scholar 

  21. Ottaviani M, Alestas T, Flori E, Mastrofrancesco A, Zouboulis C, Picardo M (2006) Peroxidated squalene induces the production of inflammatory mediators in HaCaT keratinocytes: a possible role in acne vulgaris. J Invest Dermatol 126:2430–2437

    Article  CAS  PubMed  Google Scholar 

  22. Uchino T, Kawahara N, Sekita S, Satake M, Saito Y, Tokunaga H, Ando M (2004) Potent protecting effects of Catuaba (Anemopaegma mirandum) extracts against hydroperoxide-induced cytotoxicity. Toxicol In Vitro 18:255–263

    Article  CAS  PubMed  Google Scholar 

  23. Ikeda S, Niwa T, Yamashita K (2000) Selective uptake of dietary tocotrienols into rat skin. J Nutr Sci Vitaminol (Tokyo) 46:141–143

    CAS  Google Scholar 

  24. Kawakami Y, Tsuzuki T, Nakagawa K, Miyazawa T (2007) Distribution of tocotrienols in rats fed a rice bran tocotrienol concentrate. Biosci Biotechnol Biochem 71:464–471

    Article  CAS  PubMed  Google Scholar 

  25. Miyazawa T, Shibata A, Sookwong P, Kawakami Y, Eitsuka T, Asai A, Oikawa S, Nakagawa K (2009) Antiangiogenic and anticancer potential of unsaturated vitamin E (tocotrienol). J Nutr Biochem 20:79–86

    Article  CAS  PubMed  Google Scholar 

  26. Yamada Y, Obayashi M, Ishikawa T, Kiso Y, Ono Y, Yamashita K (2008) Dietary tocotrienol reduces UVB-induced skin damage and sesamin enhances tocotrienol effects in hairless mice. J Nutr Sci Vitaminol (Tokyo) 54:117–123

    Article  CAS  Google Scholar 

  27. Sookwong P, Nakagawa K, Murata K, Kojima Y, Miyazawa T (2007) Quantitation of tocotrienol and tocopherol in various rice brans. J Agric Food Chem 55:461–466

    Article  CAS  PubMed  Google Scholar 

  28. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771

    Article  CAS  PubMed  Google Scholar 

  29. Ishiyama M, Tominaga H, Shiga M, Sasamoto K, Ohkura Y, Ueno K (1996) A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol Pharm Bull 19:1518–1520

    CAS  PubMed  Google Scholar 

  30. Crow JP (1997) Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vivo: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide Biol Chem 1:145–157

    Article  CAS  Google Scholar 

  31. Sung B, Pandey MK, Nakajima Y, Nishida H, Konishi T, Chaturvedi MM, Aggarwal BB (2008) Identification of a novel blocker of IκBα kinase activation that enhances apoptosis and inhibits proliferation and invasion by suppressing nuclear factor-κB. Mol Cancer Ther 7:191–201

    Article  CAS  PubMed  Google Scholar 

  32. Nakagawa K, Shibata A, Yamashita S, Tsuzuki T, Kariya J, Oikawa S, Miyazawa T (2007) In vivo angiogenesis is suppressed by unsaturated vitamin E, tocotrienol. J Nutr 137:1938–1943

    CAS  PubMed  Google Scholar 

  33. De Luca C, Fanfoni GB, Picardo M, Nazzaro-Porro M, Passi S (1989) The skin surface lipids of man compared with those of other different primates. J Invest Dermatol 92:473

    Google Scholar 

  34. Nazzaro-Porro M, Passi S, Boniforti L, Belsito F (1979) Effects of aging on fatty acids in skin surface lipids. J Invest Dermatol 73:112–121

    Article  CAS  PubMed  Google Scholar 

  35. Nicolaides N (1976) Skin lipids: the biochemical uniqueness. Science 186:19–23

    Article  Google Scholar 

  36. Black AT, Gray JP, Shakarjian MP, Mishin V, Laskin DL, Heck DE, Laskin JD (2008) UVB light upregulates prostaglandin synthases and prostaglandin receptors in mouse keratinocytes. Toxicol Appl Pharmacol 232:14–24

    Article  CAS  PubMed  Google Scholar 

  37. Fogh K, Herlin T, Kragballe K (1989) Eicosanoids in skin of patients with atopic dermatitis: prostaglandin E2 and leukotriene B4 are present in biologically active concentrations. J Allergy Clin Immunol 83:450–455

    Article  CAS  PubMed  Google Scholar 

  38. Vega A, Chacón P, Alba G, El Bekay R, Martín-Nieto J, Sobrino F (2006) Modulation of IgE-dependent COX-2 gene expression by reactive oxygen species in human neutrophils. J Leukoc Biol 80:152–163

    Article  CAS  PubMed  Google Scholar 

  39. Piette J, Piret B, Bonizzi G, Schoonbroodt S, Merville MP, Legrand-Poels S, Bours V (1997) Multiple redox regulation in NF-κB transcription factor activation. Biol Chem 378:1237–1245

    CAS  PubMed  Google Scholar 

  40. Packer L, Weber SU, Rimbach G (2001) Molecular aspects of α-tocotrienol antioxidant action and cell signalling. J Nutr 131:369–373

    Google Scholar 

  41. Serbinova E, Kagan V, Han D, Packer L (1991) Free radical recycling and intramembrane mobility in the antioxidant properties of α-tocopherol and α-tocotrienol. Free Radic Biol Med 10:263–275

    Article  CAS  PubMed  Google Scholar 

  42. Qureshi AA, Sami SA, Salser WA, Khan FA (2002) Dose-dependent suppression of serum cholesterol by tocotrienol-rich fraction (TRF25) of rice bran in hypercholesterolemic human. Atherosclerosis 161:199–207

    Article  CAS  PubMed  Google Scholar 

  43. Hiura Y, Tachibana H, Arakawa R, Aoyama N, Okabe M, Sakai M, Yamada K (2009) Specific accumulation of γ- and δ-tocotrienols in tumor and their antitumor effect in vivo. J Nutr Biochem 20:607–613

    Article  CAS  PubMed  Google Scholar 

  44. Khanna S, Roy S, Slivka A, Craft TKS, Chaki S, Rink C, Notestine MA, DeVries AC, Parinandi NL, Sen CK (2005) Neuroprotective properties of the natural vitamin E α-tocotrienol. Stroke 36:2258–2264

    Article  PubMed  Google Scholar 

  45. Shibata A, Nakagawa K, Sookwong P, Tsuzuki T, Oikawa S, Miyazawa T (2008) Tumor anti-angiogenic effect and mechanism of action of δ-tocotrienol. Biochem Pharmacol 76:330–339

    Article  CAS  PubMed  Google Scholar 

  46. Wu SJ, Liu PL, Ng LT (2008) Tocotrienol-rich fraction of palm oil exhibits anti-inflammatory property by suppressing the expression of inflammatory mediators in human monocytic cells. Mol Nutr Food Res 52:921–929

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Norimichi Nakahata (Graduate School of Pharmaceutical Sciences, Tohoku University, Japan) for the donation of HaCaT, and Dr. Tadashi Uchino (National Institute of Health Sciences, Tokyo, Japan) for excellent technical advice. A part of this study was supported by KAKENHI (20228002 and 22780110) of JSPS, Japan. Financial support was also provided by the Foundation of Oil and Fat Industry Kaikan, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyotaka Nakagawa.

About this article

Cite this article

Nakagawa, K., Shibata, A., Maruko, T. et al. γ-Tocotrienol Reduces Squalene Hydroperoxide-Induced Inflammatory Responses in HaCaT Keratinocytes. Lipids 45, 833–841 (2010). https://doi.org/10.1007/s11745-010-3458-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-010-3458-4

Keywords

Navigation