Skip to main content
Log in

Fatty Acid Composition of the Maternal Diet During the First or the Second Half of Gestation Influences the Fatty Acid Composition of Sows’ Milk and Plasma, and Plasma of Their Piglets

  • Original Article
  • Published:
Lipids

Abstract

Dietary supplements of olive oil (OO) or fish oil (FO) during the first (G1: day 1–60) or second half of gestation (G2: day 60 to term, day 115) were offered to pregnant sows. The proportion of fatty acids in milk and plasma were determined by gas chromatography. When supplements were given during G1, the proportions of oleic acid (OA) and arachidonic acid (AA) in the plasma were higher in the OO group than in the FO group, whereas docosahexaenoic acid (DHA) was higher in the latter group at day 56 of gestation. These differences in plasma DHA were still apparent at day 7 of lactation. Similarly, DHA was also higher in the colostrum and milk on days 3 and 21 of lactation and in the plasma of piglets from FO dams compared to the OO group, whereas AA was lower. When the FO supplement was given during G2, AA was lower and DHA higher in the plasma at day 105 of gestation and at day 7 of lactation compared with the OO group. Likewise, DHA was greater in FO than in OO animals during lactation in colostrum and in milk on days 3 and 21 of lactation, and in 3-day old suckling piglets plasma, whereas AA was lower in these animals. Thus, maternal adipose tissue plays an important role in the storage of dietary long-chain polyunsaturated fatty acids (LCPUFA) during G1. They are mobilized around parturition for milk synthesis, and an excess of dietary n-3 LCPUFA decreases the availability of AA in suckling newborns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

OO:

Olive oil

FO:

Fish oil

G1 and G2:

First and second half of gestation, respectively, used for the experimental diets

DHA:

Docosahexaenoic acid

AA:

Arachidonic acid

EFA:

Essential fatty acids

LCPUFA:

Long-chain polyunsaturated fatty acids

LA:

Linoleic acid

ALA:

α-linolenic acid

LPL:

Lipoprotein lipase

VLDL:

Very low density lipoproteins

References

  1. Hornstra G (2000) Essential fatty acids in mothers and their neonates. Am J Clin Nutr 71(suppl):1262S–1269S

    CAS  PubMed  Google Scholar 

  2. Calder PC (1998) Dietary fatty acids and the immune system. Nutr Rev 56:570–583

    Google Scholar 

  3. Calder PC, Krauss-Etschmann S, de Jong EC, Dupont C, Frick JS, Forkiaer H, Heinrich J, Garn H, Koletzko S, Lack G, Mattelio G, Renz H, Sngild PT, Schrezenmeir J, Stulnig TM, Thymann T, Wold AE, Koletzko B (2006) Early nutrition and immunity-progress and perspectives. Br J Nutr 96:774–790. doi:10.1079/BJN20061881

    Article  CAS  PubMed  Google Scholar 

  4. Demmelmair H, Schenk U, Behrendt E, Sauerwald T, Koletzko B (1995) Estimation of arachidonic acid synthesis in full term neonates using natural variation of 13C content. J Pediatr Gastroenterol Nutr 21:31–36

    Article  CAS  PubMed  Google Scholar 

  5. Makrides M, Neumann MA, Byard RW, Simmer K (1994) Fatty acid composition of brain, retina and erythrocytes in breast- and formula-fed infants. Am J Clin Nutr 60:189–194

    CAS  PubMed  Google Scholar 

  6. Van Aerde JE, Wilke MS, Feldman M, Clandinin MT (2004) Accretion of lipid in the fetus and newborn. In: Fox WW, Abman SH, Polin RA (eds) Fetal and neonatal physiology. W.B. Saunders, Philadelphia

    Google Scholar 

  7. Arbuckle LD, Innis SM (1993) Docosahexaenoic acid is transferred through maternal diet to milk and to tissues of natural milk-fed piglets. J Nutr 123:1668–1675

    CAS  PubMed  Google Scholar 

  8. Rooke JA, Sinclair AG, Edwards SA (2001) Feeding tuna oil to the sow at different times during pregnancy has different effects on piglet long-chain polyunsaturated fatty acid composition at birth and subsequent growth. Br J Nutr 86:21–30. doi:10.1079/BJN2001363

    Article  CAS  PubMed  Google Scholar 

  9. Rooke JA, Shanks M, Edwards SA (2000) Effect of offering maize, linseed or tuna oils throughout pregnancy and lactation on sow and piglet tissue composition and piglet performance. Anim Sci 71:289–299

    CAS  Google Scholar 

  10. Fritsche KL, Huang SC, Cassity NA (1993) Enrichment of omega-3 fatty acids in suckling pigs by maternal dietary fish oil supplementation. J Anim Sci 71:1841–1847

    CAS  PubMed  Google Scholar 

  11. Herrera E (2002) Lipid metabolism in pregnancy and its consequences in the fetus and newborn. Endocrine 19:43–55. doi:10.1385/ENDO:19:1:43

    Article  CAS  PubMed  Google Scholar 

  12. Herrera E, Lasunción MA, Martín A, Zorzano A (1992) Carbohydrate–lipid interactions in pregnancy. In: Herrera E, Knopp RH (eds) Perinatal biochemistry. CRC Press, Boca Raton

    Google Scholar 

  13. Ramírez I, Llobera M, Herrera E (1983) Circulating triacylglycerols, lipoproteins, and tissue lipoprotein lipase activities in rat mothers and offspring during the perinatal period: effect of postmaturity. Metabolism 32:333–341. doi:10.1016/0026-1495(83)90040-9

    Article  PubMed  Google Scholar 

  14. Alvarez JJ, Montelongo A, Iglesias A, Lasunción MA, Herrera E (1996) Longitudinal study on lipoprotein profile, high density lipoprotein subclass, and postheparin lipases during gestation in women. J Lipid Res 37:299–308

    CAS  PubMed  Google Scholar 

  15. Elliott JA (1975) The effect of pregnancy on the control of lipolysis in fat cells isolated from human adipose tissue. Eur J Clin Invest 5:159–163. doi:10.111/j.1365-2362.1975.tb00442.x

    Article  CAS  PubMed  Google Scholar 

  16. Knopp RH, Herrera E, Freinkel N (1970) Carbohydrate metabolism in pregnancy. VIII. Metabolism of adipose tissue isolated from fed and fasted pregnant rats during late gestation. J Clin Invest 49:1438–1446. doi:10.1172/JCI106361

    Article  CAS  PubMed  Google Scholar 

  17. Martín-Hidalgo A, Holm C, Belfrage P, Schotz MC, Herrera E (1994) Lipoprotein lipase and hormone-sensitive lipase activity and mRNA in adipose tissue during pregnancy. Am J Physiol 266:E930–E935

    PubMed  Google Scholar 

  18. Ramos P, Martín-Hidalgo A, Herrera E (1999) Insulin-induced up-regulation of lipoprotein lipase messenger ribonucleic acid and activity in mammary gland. Endocrinology 140:1089–1093. doi:10.1210/en.140.3.1089

    Article  CAS  PubMed  Google Scholar 

  19. Hachey DL, Thomas MR, Emken EA, Garza C, Brown-Booth L, Adlof RO, Klein PD (1987) Human lactation: maternal transfer of dietary triglycerides labeled with stable isotopes. J Lipid Res 28:1185–1192

    CAS  PubMed  Google Scholar 

  20. Argilés J, Herrera E (1989) Appearance of circulating and tissue 14C-lipids after oral 14C-tripalmitate administration in the late pregnant rat. Metabolism 32:333–341. doi:10.1016/0026-0495(89)90247-3

    Google Scholar 

  21. Innis SM (1993) The colostrum-deprived piglet as a model for study of infant lipid nutrition. J Nutr 123:386–390

    CAS  PubMed  Google Scholar 

  22. Laws J, Amusquivar E, Laws A, Herrera E, Dodds PF, Clarke L (2009) Supplementation of sows diets with oil during gestation: sow body condition, milk yield and milk composition. Livest Sci 123:88–96. doi:10.1016/j.livsci.2008.10.012

    Article  Google Scholar 

  23. Laws J, Laws A, Lean IJ, Dodds PF, Clarke L (2008) Supplementation of sow diets with oil during early-to-mid gestation: growth of offspring. Animal 10:1482–1489. doi:10.1017/S1751731107000705

    Google Scholar 

  24. Laws J, Laws A, Lean IJ, Dodds PF, Clarke L (2008) Supplementation of sow diets with oil during mid-to-late gestation: growth of offspring. Animal 10:1490–1496. doi:10.1017/S1751731107000699

    Google Scholar 

  25. Laws J, Litten JC, Laws A, Lean IJ, Dodds PF, Clarke L (2009) Effect of type and timing of oil supplements to sows during pregnancy on the growth performance and endocrine profile of low and normal weight offspring. Br J Nutr 101:240–249. doi:10.1017/S0007114508998469

    Article  CAS  PubMed  Google Scholar 

  26. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  27. Lepage G, Roy CC (1984) Improved recovery of fatty acid through direct transesterification without prior extraction and purification. J Lipid Res 25:1391–1396

    CAS  PubMed  Google Scholar 

  28. Lepage G, Roy CC (1986) Direct transesterification of all classes of lipids in a one-step reaction. J Lipid Res 27:114–120

    CAS  PubMed  Google Scholar 

  29. Martin JC, Bougnoux P, Fignon A, Theret V, Antoine JM, Lamisse F, Couet C (1993) Dependence of human milk essential fatty acids on adipose stores during lactation. Am J Clin Nutr 58:653–659

    CAS  PubMed  Google Scholar 

  30. Martin JC, Niyongabo T, Moreau L, Antoine JM, Lanson M, Berger C, Lamisse F, Bougnoux P, Couet C (1991) Essential fatty acid composition of human colostrum triglycerides: its relationship with adipose tissue composition. Am J Clin Nutr 54:829–835

    CAS  PubMed  Google Scholar 

  31. Herrera E, Amusquivar E, López-Soldado I, Ortega H (2006) Maternal lipid metabolism and placental lipid transfer. Horm Res 65(suppl 3):59–64

    Article  CAS  PubMed  Google Scholar 

  32. Herrera E, Ortega H (2008) Metabolism in normal pregnancy. In: Hod M, Jovanovic L, Di Renzo GC, De Leiva A, Langer O (eds) Textbook of diabetes and pregnancy. Informa Healthcare, London

    Google Scholar 

  33. Warnants N, Van Oeckel MJ, Boucqué CV (1999) Incorporation of dietary polyunsaturated fatty acids into pork fatty tissues. J Anim Sci 77:2478–2490

    CAS  PubMed  Google Scholar 

  34. Jaturasitha S, Khiaosa-ard R, Pongpiachan P, Kreuzer M (2009) Early deposition of n-3 fatty acids from tuna oil in lean and adipose tissue of fattening pigs is mainly permanent. J Anim Sci 87:693–703. doi:10.2527/jas.2008-0863

    Article  CAS  PubMed  Google Scholar 

  35. Goyens PL, Spilker ME, Zock PL, Katan MB, Mensink RP (2006) Conversion of α-linolenic acid in humans is influenced by the absolute amounts of α-linolenic acid and linoleic acid in the diet and not by their ratio. Am J Clin Nutr 84:44–53

    CAS  PubMed  Google Scholar 

  36. Dourmad JY, Etienne M, Noblet J (1996) Reconstitution of body reserves in multiparous sows during pregnancy: effect of energy intake during pregnancy and mobilization during the previous lactation. J Anim Sci 74:2211–2219

    CAS  PubMed  Google Scholar 

  37. Shields RG Jr, Mahan DC, Maxson PF (1985) Effect of dietary gestation and lactation protein levels on reproductive performance and body composition of first-litter female swine. J Anim Sci 60:179–189

    PubMed  Google Scholar 

  38. Kühl C (1975) Glucose metabolism during and after pregnancy in normal and gestational diabetic women. 1. Influence of normal pregnancy on serum glucose and insulin concentration during basal fasting conditions and after a challenge with glucose. Acta Endocrinol (Kbh) 79:709–719

    Google Scholar 

  39. Muñoz C, López-Luna P, Herrera E (1995) Glucose and insulin tolerance tests in the rat in different days of gestation. Biol Neonate 68:282–291

    Article  PubMed  Google Scholar 

  40. Crombech G, Siebolds M, Mies R (1993) Insulin use in pregnancy. Clinical pharmacokinetic considerations. Clin Pharmacokinet 24:89–100. doi:10.2165/00003088-199324040-0001

    Article  Google Scholar 

  41. Ramos P, Crespo-Solans MD, Del Campo S, Cacho J, Herrera E (2003) Fat accumulation in the rat during early pregnancy is modulated by enhanced insulin responsiveness. Am J Physiol Endocrinol Metab 285:E318–E328. doi:10.1152/ajpendo.00283.2003

    CAS  PubMed  Google Scholar 

  42. Knopp RH, Sandek CD, Arky RA, O’Sullivan JB (1973) Two phases of adipose tissue metabolism in pregnancy. Maternal adaptations for fetal growth. Endocrinology 92:984–988. doi:10.1210/endo-92-4-984

    Article  CAS  PubMed  Google Scholar 

  43. Herrera E (2002) Implications of dietary fatty acids during pregnancy on placental, fetal and postnatal development. A review. Placenta 23:9–19. doi:10.1053/plac.2002.0771

    Article  Google Scholar 

  44. Raclot T, Langin D, Lafontan M, Groscolas R (1997) Selective release of human adipocyte fatty acids according to molecular structure. Biochem J 324:911–915

    CAS  PubMed  Google Scholar 

  45. Amusquivar E, Herrera E (2003) Influence of changes in dietary fatty acids during pregnancy on placental and fetal fatty acid profile in the rat. Biol Neonate 83:136–145. doi:10.1159/000067963

    Article  CAS  PubMed  Google Scholar 

  46. Parmley KLS, Machado CR, McNamara JP (1996) Rates of lipid metabolism in adipose tissue of pigs adapt to lactational state and dietary energy restriction. J Nutr 126:1644–1656

    CAS  PubMed  Google Scholar 

  47. McNamara JP (1995) Role and regulation of metabolism in adipose tissue during lactation. J Nutr Biochem 6:120–129. doi:10.1016/0955-2863(95)00017-T

    Article  CAS  Google Scholar 

  48. Garg ML, Thomson ABR, Clandinin MT (1990) Interactions of saturated, n-6 and n-3 polyunsaturated fatty acids to modulate arachidonic acid metabolism. J Lipid Res 6:51–62

    Google Scholar 

  49. Raz A, Kamin-Belsky N, Przedecki F, Obukowicz MG (1998) Dietary fish oil inhibits Δ6-desaturase activity in vivo. J Am Oil Chem Soc 75:241–245. doi:10.1007/S11746-998-0037-4

    Article  CAS  Google Scholar 

  50. Del Prado M, Villalpando S, Elizondo A, Rodríguez M, Demmelmair H, Koletzko B (2001) Contribution of dietary and newly formed arachidonic acid to human milk lipids in women eating a low-fat diet. Am J Clin Nutr 74:242–247

    CAS  PubMed  Google Scholar 

  51. Salem N, Wegher B, Mena P, Uauy R (1996) Arachidonic and docosahexaenoic acids are biosynthesized from their 18-carbon precursors in human infants. Proc Natl Acad Sci USA 93:49–54. doi:10.1073/pnas.93.1.49

    Article  CAS  PubMed  Google Scholar 

  52. Sauerwald TU, Hachey DL, Jensen CL, Chen H, Anderson RE, Heird WC (1997) Intermediates in endogenous synthesis of C22:6ω3 and C20:4ω6 by term and preterm infants. Pediatr Res 41:183–187. doi:10.1203/00006450-199702000-00005

    Article  CAS  PubMed  Google Scholar 

  53. Uauy R, Mena P, Wegher B, Nieto S, Salem N (2000) Long chain polyunsaturated fatty acid formation in neonates: effect of gestational age and intrauterine growth. Pediatr Res 47:127–135. doi:10.1203/00006450-200001000-00022

    Article  CAS  PubMed  Google Scholar 

  54. Su H, Corso TN, Nathanielsz PW, Brenna JT (1999) Linoleic acid kinetics and conversion to arachidonic acid in the pregnant and fetal baboon. J Lipid Res 47:1304–1311

    Google Scholar 

  55. Scopesi F, Ciangherotti S, Lantieri PB, Risso D, Bertini I, Campone F, Pedrotti A, Bonacci W, Serra G (2001) Maternal dietary PUFAs intake and human milk content relationships during the first month of lactation. Clin Nutr 20:393–397. doi:10.1054/clnu.2001.0464

    Article  CAS  PubMed  Google Scholar 

  56. Chappell JE, Clandinin MT, Kearney-Volpe C (1985) Trans fatty acids in human milk lipids: influence of maternal diet and weight loss. Am J Clin Nutr 42:49–56

    CAS  PubMed  Google Scholar 

  57. Buison A, Lu HQ, Guo F, Jen KL (1997) High-fat feeding of different fats during pregnancy and lactation in rats: effects on maternal metabolism, pregnancy outcome, milk and tissue fatty acid profiles. Nutr Res 17:1541–1554. doi:10.1016/S0271-5317(97)00150-4

    Article  CAS  Google Scholar 

  58. Valenzuela A, Von Bernhardi R, Valenzuela A, Ramírez G, Alarcón R, Sanhueza J, Nieto S (2004) Supplementation of female rats with α-linolenic acid or docosahexaenoic acid leads to the same omega-6/omega-3 LC-PUFA accretion in mother tissues and in fetal and newborn brains. Ann Nutr Metab 48:28–35. doi:10.1159/000075082

    Article  CAS  PubMed  Google Scholar 

  59. Rooke JA, Bland IM, Edwards SA (1999) Relationships between fatty acid status of sow plasma and that of umbilical cord, and tissues of newborn piglets when sows were fed on diets containing tuna oil or soyabean oil in late pregnancy. Br J Nutr 82:213–221

    CAS  PubMed  Google Scholar 

  60. Kouba M, Mourot J, Peiniau P (1997) Stearoyl-CoA desaturase activity in adipose tissues and liver of growing Large White and Meishan pigs. Comp Biochem Physiol B 118B:509–514. doi:10.1016/S0305-0491(97)00173-9

    Article  CAS  Google Scholar 

  61. Singh K, Hartley DG, McFadden TB, Mackenzie DDS (2004) Dietary fat regulates mammary stearoyl CoA desaturase expression and activity in lactating mice. J Dairy Res 71:1–6. doi:10.1017/S0022029903006502

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Milagros Morante, Kate Perkins, Anne Corson and Jennie Litten, for their excellent technical assistance and the staff at Imperial College London’s pig unit for the maintenance and supply of animals used in this study. Supported by grants from the European Community (specific RTD programme “Quality of Life and Management of Living Resources”, QLK1-2001—00138, PeriLip) and Ministerio de Educación y Ciencia (SAF2008-04518) of Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Herrera.

About this article

Cite this article

Amusquivar, E., Laws, J., Clarke, L. et al. Fatty Acid Composition of the Maternal Diet During the First or the Second Half of Gestation Influences the Fatty Acid Composition of Sows’ Milk and Plasma, and Plasma of Their Piglets. Lipids 45, 409–418 (2010). https://doi.org/10.1007/s11745-010-3415-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-010-3415-2

Keywords

Navigation