Skip to main content
Log in

Protein Tyrosine Phosphatase-1B (PTP-1B) Knockdown Improves Palmitate-Induced Insulin Resistance in C2C12 Skeletal Muscle Cells

  • Original Article
  • Published:
Lipids

Abstract

Insulin resistance is the central defect in type 2 diabetes and obesity. During the development of insulin resistance a lipid accumulation is accompanied by increased PTP-1B expression in the muscle. The aim of this study was to examine the effects of PTP-1B knockdown on insulin signaling and insulin resistance in the presence or absence of palmitate in C2C12 skeletal muscle cells. A stable C2C12 cell line was established using short hairpin RNA (shRNA) to knockdown protein expression of PTP1B. Analysis of PTP-1B protein expression and phosphorylation and protein levels of IRS-1 and Akt were detected by western blot. The effects of PTP-1B knockdown on the glucose uptake was also measured in C2C12 cells. The stable C2C12 cell line harboring the PTP-1B shRNA showed 62% decrease in the PTP-1B protein levels. 0.5 mM palmitate significantly induced insulin resistance in both control (26%) and PTP-1B knockdown cells (16.5%) compared to the untreated cells. Under treatment with palmitate, insulin stimulated phosphorylation of IRS-1 (Tyr632) and Akt (Ser473) in knockdown cells was significantly 1.55- and 1.86-fold, respectively, greater than the controls. In the presence of palmitate, insulin dependent glucose uptake was significantly about 3-fold higher in PTP-1B knockdown stable C2C12 cells compared to the control cells. Our data showed that decreasing the PTP-1B protein level by shRNA can enhance the activity of important elements of insulin signaling. The improvement in insulin action persisted even in palmitate treated insulin resistant myotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

2-DOG:

2-Deoxyglucose

IR:

Insulin receptor

IRS-1:

Insulin receptor substrate-1

LAR:

Leukocyte antigen related phosphatase

PTP-1B:

Protein tyrosine phosphatase-1B

ShRNA:

Small hairpin RNA

References

  1. Czech MP (2002) Fat targets for insulin signaling. Mol Cell 9:695–696

    Article  CAS  PubMed  Google Scholar 

  2. McGarry JD (1992) What if Minkowski had been ageusic? An alternative angle on diabetes. Science 258:766–770

    Article  CAS  PubMed  Google Scholar 

  3. Paolisso G, Tataranni PA, Foley JE, Bogardus C, Howard BV, Ravussin E (1995) A high concentration of fasting plasma non-esterified fatty acids is a risk factor for the development of NIDDM. Diabetologia 38:1213–1217

    Article  CAS  PubMed  Google Scholar 

  4. Chavez JA, Summers SA (2003) Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch Biochem Biophys 419:101–109

    Article  CAS  PubMed  Google Scholar 

  5. Reynoso R, Salgado LM, Calderon V (2003) High levels of palmitic acid lead to insulin resistance due to changes in the level of phosphorylation of the insulin receptor and insulin receptor substrate-1. Mol Cell Biochem 246:155–162

    Article  CAS  PubMed  Google Scholar 

  6. Schmitz-Peiffer C, Craig DL, Biden TJ (1999) Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate. J Biol Chem 274:24202–24210

    Article  CAS  PubMed  Google Scholar 

  7. Pessin JE, Saltiel AR (2000) Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest 106:165–169

    Article  CAS  PubMed  Google Scholar 

  8. Vanhaesebroeck B, Alessi DR (2000) The PI3 K-PDK1 connection: more than just a road to PKB. Biochem J 346:561–576

    Article  CAS  PubMed  Google Scholar 

  9. Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1:785–789

    Article  CAS  PubMed  Google Scholar 

  10. Randle PJ, Newsholme EA, Garland PB (1964) Regulation of glucose uptake by muscle. 8. Effects of fatty acids, ketone bodies and pyruvate, and of alloxan-diabetes and starvation, on the uptake and metabolic fate of glucose in rat heart and diaphragm muscles. Biochem J 93:652–665

    CAS  PubMed  Google Scholar 

  11. Dresner A, Laurent D, Marcucci M, Griffin ME, Dufour S, Cline GW, Slezak LA, Andersen DK, Hundal RS, Rothman DL, Petersen KF, Shulman GI (1999) Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 103:253–259

    Article  CAS  PubMed  Google Scholar 

  12. Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D, Goodyear LJ, Kraegen EW, White MF, Shulman GI (1999) Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 48:1270–1274

    Article  CAS  PubMed  Google Scholar 

  13. Ahmad F, Considine RV, Bauer TL, Ohannesian JP, Marco CC, Goldstein BJ (1997) Improved sensitivity to insulin in obese subjects following weight loss is accompanied by reduced protein-tyrosine phosphatases in adipose tissue. Metabolism 46:1140–1145

    Article  CAS  PubMed  Google Scholar 

  14. Ahmad F, Goldstein BJ (1995) Alterations in specific protein-tyrosine phosphatases accompany insulin resistance of streptozotocin diabetes. Am J Physiol 268:932–940

    Google Scholar 

  15. Ahmad F, Goldstein BJ (1995) Increased abundance of specific skeletal muscle protein-tyrosine phosphatases in a genetic model of insulin-resistant obesity and diabetes mellitus. Metabolism 44:1175–1184

    Article  CAS  PubMed  Google Scholar 

  16. Seely BL, Staubs PA, Reichart DR, Berhanu P, Milarski KL, Saltiel AR, Kusari J, Olefsky JM (1996) Protein tyrosine phosphatase 1B interacts with the activated insulin receptor. Diabetes 45:1379–1385

    Article  CAS  PubMed  Google Scholar 

  17. Byon JC, Kusari AB, Kusari J (1998) Protein-tyrosine phosphatase-1B acts as a negative regulator of insulin signal transduction. Mol Cell Biochem 182:101–108

    Article  CAS  PubMed  Google Scholar 

  18. Goldstein BJ, Ahmad F, Ding W, Li PM, Zhang WR (1998) Regulation of the insulin signalling pathway by cellular protein-tyrosine phosphatases. Mol Cell Biochem 182:91–99

    Article  CAS  PubMed  Google Scholar 

  19. Simoncic PD, McGlade CJ, Tremblay ML (2006) PTP1B and TC-PTP: novel roles in immune-cell signaling. Can J Physiol Pharmacol 84:667–675

    Article  CAS  PubMed  Google Scholar 

  20. Tonks NK (2003) PTP1B: from the sidelines to the front lines! FEBS Lett 546:140–148

    Article  CAS  PubMed  Google Scholar 

  21. Goldstein BJ (1993) Regulation of insulin receptor signaling by protein-tyrosine dephosphorylation. Receptor 3:1–15

    CAS  PubMed  Google Scholar 

  22. Byon JC, Kenner KA, Kusari AB, Kusari J (1997) Regulation of growth factor-induced signaling by protein-tyrosine-phosphatases. Proc Soc Exp Biol Med 216:1–20

    CAS  PubMed  Google Scholar 

  23. Goldstein BJ, Bittner-Kowalczyk A, White MF, Harbeck M (2000) Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B. Possible facilitation by the formation of a ternary complex with the Grb2 adaptor protein. J Biol Chem 275:4283–4289

    Article  CAS  PubMed  Google Scholar 

  24. Kenner KA, Anyanwu E, Olefsky JM, Kusari J (1996) Protein-tyrosine phosphatase 1B is a negative regulator of insulin- and insulin-like growth factor-I-stimulated signaling. J Biol Chem 271:19810–19816

    Article  CAS  PubMed  Google Scholar 

  25. Zabolotny JM, Haj FG, Kim YB, Kim HJ, Shulman GI, Kim JK, Neel BG, Kahn BB (2004) Transgenic overexpression of protein-tyrosine phosphatase 1B in muscle causes insulin resistance, but overexpression with leukocyte antigen-related phosphatase does not additively impair insulin action. J Biol Chem 279:24844–24851

    Article  CAS  PubMed  Google Scholar 

  26. Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, Normandin D, Cheng A, Himms-Hagen J, Chan CC, Ramachandran C, Gresser MJ, Tremblay ML, Kennedy BP (1999) Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283:1544–1548

    Article  CAS  PubMed  Google Scholar 

  27. Klaman LD, Boss O, Peroni OD, Kim JK, Martino JL, Zabolotny JM, Moghal N, Lubkin M, Kim YB, Sharpe AH, Stricker-Krongrad A, Shulman GI, Neel BG, Kahn BB (2000) Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol 20:5479–5489

    Article  CAS  PubMed  Google Scholar 

  28. Nieto-Vazquez I, Fernandez-Veledo S, de Alvaro C, Rondinone CM, Valverde AM, Lorenzo M (2007) Protein-tyrosine phosphatase 1B-deficient myocytes show increased insulin sensitivity and protection against tumor necrosis factor-alpha-induced insulin resistance. Diabetes 56:404–413

    Article  CAS  PubMed  Google Scholar 

  29. Dadke SS, Li HC, Kusari AB, Begum N, Kusari J (2000) Elevated expression and activity of protein-tyrosine phosphatase 1B in skeletal muscle of insulin-resistant type II diabetic Goto-Kakizaki rats. Biochem Biophys Res Commun 274:583–589

    Article  CAS  PubMed  Google Scholar 

  30. Ahmad F, Azevedo JL, Cortright R, Dohm GL, Goldstein BJ (1997) Alterations in skeletal muscle protein-tyrosine phosphatase activity and expression in insulin-resistant human obesity and diabetes. J Clin Invest 100:449–458

    Article  CAS  PubMed  Google Scholar 

  31. Zabolotny JM, Kim YB, Welsh LA, Kershaw EE, Neel BG, Kahn BB (2008) Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo. J Biol Chem 283:14230–14241

    Article  CAS  PubMed  Google Scholar 

  32. Graham FL, van der Eb AJ (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467

    Article  CAS  PubMed  Google Scholar 

  33. Chen C, Okayama H (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7:2745–2752

    CAS  PubMed  Google Scholar 

  34. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  35. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  36. Swarbrick MM, Havel PJ, Levin AA, Bremer AA, Stanhope KL, Butler M, Booten SL, Graham JL, McKay RA, Murray SF, Watts LM, Monia BP, Bhanot S (2009) Inhibition of protein tyrosine phosphatase-1B with antisense oligonucleotides improves insulin sensitivity and increases adiponectin concentrations in monkeys. Endocrinology 150:1670–1679

    Article  CAS  PubMed  Google Scholar 

  37. Kasibhatla B, Wos J, Peters KG (2007) Targeting protein tyrosine phosphatase to enhance insulin action for the potential treatment of diabetes. Curr Opin Investig Drugs 8:805–813

    CAS  PubMed  Google Scholar 

  38. Liu F, Dallas-Yang Q, Castriota G, Fischer P, Santini F, Ferrer M, Li J, Akiyama TE, Berger JP, Zhang BB, Jiang G (2009) Development of a novel GLUT4 translocation assay for identifying potential novel therapeutic targets for insulin sensitization. Biochem J 418:413–420

    Article  CAS  PubMed  Google Scholar 

  39. Cheng A, Dube N, Gu F, Tremblay ML (2002) Coordinated action of protein tyrosine phosphatases in insulin signal transduction. Eur J Biochem 269:1050–1059

    Article  CAS  PubMed  Google Scholar 

  40. Goldstein BJ, Li PM, Ding W, Ahmad F, Zhang WR (1998) Regulation of insulin action by protein tyrosine phosphatases. Vitam Horm 54:67–96

    Article  CAS  PubMed  Google Scholar 

  41. Yeo TT, Yang T, Massa SM, Zhang JS, Honkaniemi J, Butcher LL, Longo FM (1997) Deficient LAR expression decreases basal forebrain cholinergic neuronal size and hippocampal cholinergic innervation. J Neurosci Res 47:348–360

    Article  CAS  PubMed  Google Scholar 

  42. Calera MR, Vallega G, Pilch PF (2000) Dynamics of protein-tyrosine phosphatases in rat adipocytes. J Biol Chem 275:6308–6312

    Article  CAS  PubMed  Google Scholar 

  43. Sorenson CM, Sheibani N (2002) Altered regulation of SHP-2 and PTP 1B tyrosine phosphatases in cystic kidneys from bcl-2 −/− mice. Am J Physiol Renal Physiol 282:442–450

    Google Scholar 

  44. Miranda S, Gonzalez-Rodriguez A, Revuelta-Cervantes J, Rondinone CM, Valverde AM (2010) Beneficial effects of PTP1B deficiency on brown adipocyte differentiation and protection against apoptosis induced by pro- and anti-inflammatory stimuli. Cell Signal 22(4):645–659

    Article  CAS  PubMed  Google Scholar 

  45. Wu C, Zhang L, Bourne PA, Reeder JE, di Sant’Agnese PA, Yao JL, Na Y, Huang J (2006) Protein tyrosine phosphatase PTP1B is involved in neuroendocrine differentiation of prostate cancer. Prostate 66:1125–1135

    Article  CAS  PubMed  Google Scholar 

  46. Esposito DL, Li Y, Cama A, Quon MJ (2001) Tyr(612) and Tyr(632) in human insulin receptor substrate-1 are important for full activation of insulin-stimulated phosphatidylinositol 3-kinase activity and translocation of GLUT4 in adipose cells. Endocrinology 142:2833–2840

    Article  CAS  PubMed  Google Scholar 

  47. Hirata AE, Alvarez-Rojas F, Campello Carvalheira JB, de Oliveira Carvalho CR, Dolnikoff MS, Abdalla Saad MJ (2003) Modulation of IR/PTP1B interaction and downstream signaling in insulin sensitive tissues of MSG-rats. Life Sci 73:1369–1381

    Article  CAS  PubMed  Google Scholar 

  48. Storz P, Doppler H, Wernig A, Pfizenmaier K, Muller G (1999) Cross-talk mechanisms in the development of insulin resistance of skeletal muscle cells palmitate rather than tumour necrosis factor inhibits insulin-dependent protein kinase B (PKB)/Akt stimulation and glucose uptake. Eur J Biochem 266:17–25

    Article  CAS  PubMed  Google Scholar 

  49. Jove M, Planavila A, Sanchez RM, Merlos M, Laguna JC, Vazquez-Carrera M (2006) Palmitate induces tumor necrosis factor-alpha expression in C2C12 skeletal muscle cells by a mechanism involving protein kinase C and nuclear factor-kappaB activation. Endocrinology 147:552–561

    Article  CAS  PubMed  Google Scholar 

  50. Sun C, Zhang F, Ge X, Yan T, Chen X, Shi X, Zhai Q (2007) SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab 6:307–319

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from the Iran National Science Foundation (INSF) (grant no. 86062/23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Meshkani.

About this article

Cite this article

Bakhtiyari, S., Meshkani, R., Taghikhani, M. et al. Protein Tyrosine Phosphatase-1B (PTP-1B) Knockdown Improves Palmitate-Induced Insulin Resistance in C2C12 Skeletal Muscle Cells. Lipids 45, 237–244 (2010). https://doi.org/10.1007/s11745-010-3394-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-010-3394-3

Keywords

Navigation