Skip to main content
Log in

Nitro-fatty Acids Occur in Human Plasma in the Picomolar Range: a Targeted Nitro-lipidomics GC–MS/MS Study

  • Original Article
  • Published:
Lipids

Abstract

First studies on the occurrence of nitrated fatty acids in plasma of healthy subjects revealed basal concentrations of 600 nM for free/nonesterified nitro-oleic acid (NO2-OA) as measured by liquid chromatography tandem mass spectrometry (LC–MS/MS). We recently showed by a gas chromatography tandem mass spectrometry (GC–MS/MS) method the physiological occurrence of two isomers, i.e., 9-NO2-OA and 10-NO2-OA, at mean basal plasma concentrations of 880 and 940 pM, respectively. In consideration of this large discrepancy we modified our originally reported method by replacing solid-phase extraction (SPE) by solvent extraction with ethyl acetate and by omitting the high-performance liquid chromatography (HPLC) step for a more direct detection and with the potential for lipidomics studies. Intra-assay imprecision and accuracy of the modified method in human plasma were 1–34% and 91–221%, respectively, for added NO2-OA concentrations in the range 0–3,000 pM. This method provided basal plasma concentrations of 306 ± 44 pM for 9-NO2-OA and 316 ± 33 pM for 10-NO2-OA in 15 healthy subjects. Nitro-arachidonic acid and nitro-linolenic acid were not detectable in the plasma samples. In summary, our studies show 9-NO2-OA and 10-NO2-OA as endogenous nitrated fatty acids in human plasma in the pM range; HPLC is recommendable as a sample clean-up step for reliable quantification of nitro-oleic acids by GC–MS/MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CID:

Collision-induced dissociation

GC–MS/MS:

Gas chromatography tandem mass spectrometry

HAc:

Acetic acid

LC–MS/MS:

Liquid chromatography tandem mass spectrometry

MeCN:

Acetonitrile

MeOH:

Methanol

m/z :

Mass-to-charge

NO2-OA:

Nitro-oleic acid

PFB:

Pentafluorobenzyl

PFB-Br:

Pentafluorobenzyl bromide

QC:

Quality control

S/N:

Signal-to-noise

SPE:

Solid-phase extraction

SRM:

Selected reaction monitoring

TSQ:

Triple-stage quadrupole

References

  1. Balazy M, Iesaki T, Park JL, Jiang H, Kaminski PM, Wolin MS (2001) Vicinal nitrohydroxyeicosatrienoic acids: vasodilator lipids formed by reaction of nitrogen dioxide with arachidonic acid. J Pharmacol Exp Ther 299:611–619

    PubMed  CAS  Google Scholar 

  2. Baker PRS, Schopfer FJ, Sweeney S, Freeman BA (2004) Red cell membrane and plasma linoleic acid nitration products: synthesis, clinical identification, and quantitation. Proc Natl Acad Sci USA 101:11577–11582

    Article  PubMed  CAS  Google Scholar 

  3. Kalyanaraman B (2004) Nitrated lipids: a class of cell-signaling molecules. Proc Natl Acad Sci USA 101:11527–11528

    Article  PubMed  CAS  Google Scholar 

  4. Schopfer FJ, Baker PRS, Giles G, ChumLey P, Batthyany C, Crawford J, Patel RP, Hogg N, Branchaud BP, Lancaster JR Jr, Freeman BA (2005) Fatty acid transduction of nitric oxide signalling. J Biol Chem 280:19289–19927

    Article  PubMed  CAS  Google Scholar 

  5. Baker PRS, Lin Y, Schopfer FJ, Woodcock SR, Groeger AL, Bathyany C, Sweeney S, Long MH, Iles KE, Baker LMS, Branchaud BP, Chen YE, Freeman BA (2005) Fatty acid transduction of nitric oxide signalling. J Biol Chem 280:42464–42475

    Article  PubMed  CAS  Google Scholar 

  6. Lima ÉS, Bovini MG, Augusto O, Barbero HV, Souza HP, Abballa DSP (2005) Nitrated lipids decompose to nitric oxide and lipids radicals and cause vasorelaxation. Free Radic Biol Med 39:532–539

    Article  PubMed  CAS  Google Scholar 

  7. Cui T, Schopfer FJ, Zhang J, Chen K, Ichikawa T, Baker PRS, Bathyany C, Chacko BK, Feng X, Patel RP, Agarwal A, Freeman BA (2005) Nitrated fatty acids: endogenous anti-inflammatory signalling mediators. J Biol Chem 281:35686–35698

    Article  Google Scholar 

  8. Woodcock SR, Marwitz AJV, Bruno P, Branchoud BP (2006) Synthesis of nitrolipids. All four possible diastereomers of nitrooleic acids: (E)- and (Z)-, 9- and 10-nitro-octadec-9-enoic acids. Org Lett 8:3931–3934

    Article  PubMed  CAS  Google Scholar 

  9. Jain K, Siddam A, Marathi A, Roy U, Falck JR, Balazy M (2008) The mechanism of oleic acid nitration by ·NO2. Free Radic Biol Med 45:269–283

    Article  PubMed  CAS  Google Scholar 

  10. Trostchansky A, Rubbo H (2008) Nitrated fatty acids: mechanism of formation, chemical characterization, and biological properties. Free Radic Biol Med 44:1887–1896

    Article  PubMed  CAS  Google Scholar 

  11. Rubbo H, Radi R (2008) Protein and lipid nitration: role in redox signaling and injury. Biochim Biophys Acta 1780:1318–1324

    PubMed  CAS  Google Scholar 

  12. Freeman BA, Baker PRS, Schopfer FJ, Woodcock SR, Napoletano A, d′Ischia M (2008) Nitro-fatty acid formation and signaling. J Biol Chem 283:15515–15519

    Article  PubMed  CAS  Google Scholar 

  13. Tsikas D, Zoerner A, Mitschke A, Homsi Y, Gutzki FM, Jordan J (2009) Specific GC–MS/MS stable-isotope dilution methodology for free 9- and 10-nitro-oleic acid in human plasma challenges previous LC–MS/MS reports. J Chromatogr B 877:2895–2908

    Article  CAS  Google Scholar 

  14. Rudolph V, Schopfer FJ, Khoo NKH, Rudolph TK, Cole MP, Woodcock S, Bonacci G, Groeger AL, Golin-Bisello F, Chen CS, Baker PRS, Freeman BA (2009) Nitro-fatty acid metabolome: saturation, desaturation, β-oxidation, and protein adduction. J Biol Chem 284:1461–1473

    Article  PubMed  CAS  Google Scholar 

  15. Hu C, van der Heijden R, Wang M, van der Greef J, Hankemeier T, Xu G (2009) Analytical strategies in lipidomics and applications in disease biomarker discovery. J Chromatogr B 877:2836–2846

    Google Scholar 

  16. Annesley TM (2003) Ion suppression in mass spectrometry. Clin Chem 49:1041–1044

    Article  PubMed  CAS  Google Scholar 

  17. Matuszewski BK (2006) Standard line slopes as a measure of a relative matrix effect in quantitative HPLC–MS bioanalysis. J Chromatogr B 820:293–300

    Article  Google Scholar 

  18. Tsikas D, Dehnert S, Urban K, Surdacki A, Meyer HH (2009) GC–MS analysis of S-nitrosothiols after conversion to S-nitroso-N-acetylcysteine ethyl ester and in-injector nitrosation of ethyl acetate. J Chromatogr B. doi:10.1016/j.jchromb.2009.06.032

  19. Christeff N, Homo-Delarche F, Thobie N, Durant S, Dardenne M, Nunez EA (1994) Free fatty acid profiles in the non-obese diabetic (NOD) mouse: basal serum levels and effects of endocrine manipulation. Prostaglandins Leukot Essent Fatty Acids 51:125–131

    Article  PubMed  CAS  Google Scholar 

  20. Jobgen WS, Jobgen SC, Li H, Meininger CJ, Wu G (2007) Analysis of nitrite and nitrate in biological samples using high-performance liquid chromatography. J Chromatogr B 851:71–82

    Article  CAS  Google Scholar 

  21. Giustarini D, Milzani A, Dalle-Donne I, Rossi R (2007) Detection of S-nitrosothiols in biological fluids: a comparison among the most widely applied methodologies. J Chromatogr B 851:124–139

    Article  CAS  Google Scholar 

  22. Tsikas D, Caidahl K (2005) Recent methodological advances in the mass spectrometric analysis of free and protein-associated 3-nitrotyrosine in human plasma. J Chromatogr B 814:1–9

    Article  CAS  Google Scholar 

  23. Ryberg H, Caidahl K (2007) Chromatographic and mass spectrometric methods for quantitative determination of 3-nitrosotyrosine in biological samples and their application to human samples. J Chromatogr B 851:160–171

    Article  CAS  Google Scholar 

  24. Tsikas D (2008) A critical review and discussion of analytical methods in the l-arginine/nitric oxide (NO) area of basic and clinical research. Anal Biochem 379:139–163

    Article  PubMed  CAS  Google Scholar 

  25. Schopfer FJ, Batthyany C, Baker PRS, Bonacci G, Cole MP, Rudolph V, Groeger A, Rudolph TK, Nadtochiy S, Brookes PS, Freeman BA (2009) Detection and quantification of protein adduction by electrophilic fatty acids: mitochondrial generation of fatty acid nitroalkene derivatives. Free Radic Biol Med 46:1250–1259

    Article  PubMed  CAS  Google Scholar 

  26. Baker PRS, Schopfer FJ, O′Donnell VB, Freeman BA (2009) Convergence of nitric oxide and lipid signaling: anti-inflammatory nitro-fatty acids. Free Radic Biol Med 46:989–1003

    Article  PubMed  CAS  Google Scholar 

  27. Trostchansky A, Souza JM, Ferreira A, Ferrari M, Blancko F, Trujillo M, Castro D, Cerecetto H, Baker RP, O′Donnell VB, Rubbo H (2007) Synthesis, isomer characterization, and anti-inflammatory properties of nitroarachidonate. Biochemistry 46:4645–4653

    Article  PubMed  CAS  Google Scholar 

  28. Chen L, Bosworth CA, Pico T, Collawn JF, Varga K, Gaao Z, Clancy JP, Fortenberry JA, Lancaster JR Jr, Matalon S (2008) DETANO and nitrated lipids increase chloride secretion across lung airway cells. Am J Respir Cell Mol Biol 39:150–162

    Article  PubMed  CAS  Google Scholar 

  29. Iles KE, Wright MM, Cole MP, Welty NE, Ware LB, Matthay MA, Schopfer FJ, Baker PRS, Agarwal A, Freeman BA (2009) Fatty acids transduction of nitric acid signalling: nitrolinoleic acid mediates protective effects through regulation of the ERK pathway. Free Radic Biol Med 46:866–875

    Article  PubMed  CAS  Google Scholar 

  30. Taylor-Clark TE, Ghatta S, Bettner W, Undem BJ (2009) Nitrooleic acid, an endogenous product of nitrative stress, activates nociceptive sensory nerves via the direct activation of TRPA1. Mol Pharmacol 75:820–829

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Tsikas.

About this article

Cite this article

Tsikas, D., Zoerner, A.A., Mitschke, A. et al. Nitro-fatty Acids Occur in Human Plasma in the Picomolar Range: a Targeted Nitro-lipidomics GC–MS/MS Study. Lipids 44, 855–865 (2009). https://doi.org/10.1007/s11745-009-3332-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-009-3332-4

Keywords

Navigation