Skip to main content
Log in

StAR Overexpression Decreases Serum and Tissue Lipids in Apolipoprotein E-deficient Mice

  • Original Article
  • Published:
Lipids

Abstract

Cholesterol metabolism as initiated by mitochondrial sterol 27-hydroxylase (CYP27A1) is a ubiquitous pathway capable of synthesizing multiple key regulatory oxysterols involved in lipid homeostasis. Previously we have shown that the regulation of its activities within hepatocytes is highly controlled by the rate of mitochondrial cholesterol delivery. In the present study, we hypothesized that increasing expression of the mitochondrial cholesterol delivery protein, steroidogenic acute regulatory protein (StAR), is able to lower lipid accumulation in liver, aortic wall, as well as in serum in a well-documented animal model, apolipoprotein E-deficient (apoE−/−) mice. ApoE−/− mice, characterized by increased serum, liver, and endothelial cholesterol and triglyceride levels by 3 months of age, were infected with recombinant cytomegalovirus (CMV)-StAR adenovirus to increase StAR protein expression. Six days following infection, serum total cholesterol and triglycerides had decreased 19 and 30% (P < 0.01), respectively, with a compensatory 40% (P < 0.01) increase in serum HDL-cholesterol in increased StAR expressing mice as compared to controls (no or control virus). Histologic and biochemical analysis of the liver demonstrated not only a dramatic decrease in cholesterol (↓25%; P < 0.01), but an even more marked decrease in triglyceride (↓56%; P < 0.01) content. En bloc Sudan IV staining of the aorta revealed a >80% (P < 0.01) decrease in neutral lipid staining. This study demonstrates for the first time a possible therapeutic role of the CYP27A1-initiated pathway in the treatment of dyslipidemias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ALP:

Alkaline phosphatase

ALT:

Alanine aminotransferase

apoE−/− :

Apolipoprotein E-deficient

AST:

Aspartate aminotransferase

BAS:

Bile acid synthesis

CMV:

Cytomegalovirus

CTX:

Cerebrotendinous xanthomatosis

CYP7A1:

Cholesterol 7 alpha-hydroxylase

CYP27A1:

Sterol 27-hydroxylase

EGFP:

Enhanced Green fluorescent protein

HDL:

High density lipoprotein

HDL-CHO:

HDL cholesterol

IDL:

Intermediate-density lipoproteins

LDL:

Low density lipoprotein

NS:

Normal saline

O.C.T:

Optimum cutting temperature compound

PC-TP:

Phosphatidylcholine transfer protein

PPARγ:

Proliferation peroxysome activator receptor gamma

StAR:

Steroidogenic acute regulatory protein

START:

StAR-related lipid transfer domain

T-CHO:

Total cholesterol

TG:

Triglyceride

VLDL:

Very low-density lipoproteins

References

  1. Ansell BJ (2008) Hyperlipidaemia and cardiovascular disease. Curr Opin Lipidol 19:433–434

    Article  PubMed  CAS  Google Scholar 

  2. Cohen DE, Green RM, Wu MK, Beier DR (1999) Cloning, tissue-specific expression, gene structure and chromosomal localization of human phosphatidylcholine transfer protein. Biochim Biophys Acta 1447:265–270

    PubMed  CAS  Google Scholar 

  3. Alpy F, Stoeckel ME, Dierich A, Escola JM, Wendling C, Chenard MP, Vanier MT, Gruenberg J, Tomasetto C, Rio MC (2001) The steroidogenic acute regulatory protein homolog MLN64, a late endosomal cholesterol-binding protein. J Biol Chem 276:4261–4269

    Article  PubMed  CAS  Google Scholar 

  4. Watari H, Arakane F, Moog-Lutz C, Kallen CB, Tomasetto C, Gerton GL, Rio MC, Baker ME, Strauss JFIII (1997) MLN64 contains a domain with homology to the steroidogenic acute regulatory protein (StAR) that stimulates steroidogenesis. Proc Natl Acad Sci USA 94:8462–8467

    Article  PubMed  CAS  Google Scholar 

  5. Romanowski MJ, Soccio RE, Breslow JL, Burley SK (2002) Crystal structure of the Mus musculus cholesterol-regulated START protein 4 (StarD4) containing a StAR-related lipid transfer domain. Proc Natl Acad Sci USA 99:6949–6954

    Article  PubMed  CAS  Google Scholar 

  6. Tsujishita Y, Hurley JH (2000) Structure and lipid transport mechanism of a StAR-related domain. Nat Struct Biol 7:408–414

    Article  PubMed  CAS  Google Scholar 

  7. Maxfield FR, Wustner D (2002) Intracellular cholesterol transport. J Clin Invest 110:891–898

    PubMed  CAS  Google Scholar 

  8. Soccio RE, Adams RM, Maxwell KN, Breslow JL (2005) Differential gene regulation of StarD4 and StarD5 cholesterol transfer proteins. Activation of StarD4 by sterol regulatory element-binding protein-2 and StarD5 by endoplasmic reticulum stress. J Biol Chem 280:19410–19418

    Article  PubMed  CAS  Google Scholar 

  9. Christenson LK, Strauss JFIII (2000) Steroidogenic acute regulatory protein (StAR) and the intramitochondrial translocation of cholesterol. Biochim Biophys Acta 1529:175–187

    PubMed  CAS  Google Scholar 

  10. Stocco DM (2000) Intramitochondrial cholesterol transfer. Biochim Biophys Acta 1486:184–197

    PubMed  CAS  Google Scholar 

  11. Jefcoate C (2002) High-flux mitochondrial cholesterol trafficking, a specialized function of the adrenal cortex. J Clin Invest 110:881–890

    PubMed  CAS  Google Scholar 

  12. Hall EA, Ren S, Hylemon PB, Rodriguez-Agudo D, Redford K, Marques D, Kang D, Gil G, Pandak WM (2005) Detection of the steroidogenic acute regulatory protein, StAR, in human liver cells. Biochim Biophys Acta 1733:111–119

    PubMed  CAS  Google Scholar 

  13. Ning Y, Chen S, Li X, Ma Y, Zhao F, Yin L (2006) Cholesterol, LDL, and 25-hydroxycholesterol regulate expression of the steroidogenic acute regulatory protein in microvascular endothelial cell line (bEnd.3). Biochem Biophys Res Commun 342:1249–1256

    Article  PubMed  CAS  Google Scholar 

  14. Ning Y, Bai Q, Lu H, Li X, Pandak WM, Zhao F, Chen S, Ren S, Yin L (2008) Overexpression of mitochondrial cholesterol delivery protein, StAR, decreases intracellular lipids and inflammatory factors secretion in macrophages. Atherosclerosis. doi:10.1016/j.atherosclerosis.2008.09.006

    PubMed  Google Scholar 

  15. Ma Y, Ren S, Pandak WM, Li X, Ning Y, Lu C, Zhao F, Yin L (2007) The effects of inflammatory cytokines on steroidogenic acute regulatory protein expression in macrophages. Inflamm Res 56:495–501

    Article  PubMed  CAS  Google Scholar 

  16. Pandak WM, Ren S, Marques D, Hall E, Redford K, Mallonee D, Bohdan P, Heuman D, Gil G, Hylemon P (2002) Transport of cholesterol into mitochondria is rate-limiting for bile acid synthesis via the alternative pathway in primary rat hepatocytes. J Biol Chem 277:48158–48164

    Article  PubMed  CAS  Google Scholar 

  17. Li X, Pandak WM, Erickson SK, Ma Y, Yin L, Hylemon P, Ren S (2007) Biosynthesis of the regulatory oxysterol, 5-cholesten-3beta, 25-diol 3-sulfate, in hepatocytes. J Lipid Res 48:2587–2596

    Article  PubMed  CAS  Google Scholar 

  18. Ren S, Hylemon P, Zhang ZP, Rodriguez-Agudo D, Marques D, Li X, Zhou H, Gil G, Pandak WM (2006) Identification of a novel sulfonated oxysterol, 5-cholesten-3beta, 25-diol 3-sulfonate, in hepatocyte nuclei and mitochondria. J Lipid Res 47:1081–1090

    Article  PubMed  CAS  Google Scholar 

  19. Ren S, Li X, Rodriguez-Agudo D, Gil G, Hylemon P, Pandak WM (2007) Sulfated oxysterol, 25HC3S, is a potent regulator of lipid metabolism in human hepatocytes. Biochem Biophys Res Commun 360:802–808

    Article  PubMed  CAS  Google Scholar 

  20. Ma Y, Xu L, Rodriguez-Agudo D, Li X, Heuman DM, Hylemon PB, Pandak WM, Ren S (2008) 25-Hydroxycholesterol-3-sulfate regulates macrophage lipid metabolism via the LXR/SREBP-1 signaling pathway. Am J Physiol Endocrinol Metab 295:E1369–E1379

    Article  PubMed  CAS  Google Scholar 

  21. Ren S, Hylemon PB, Marques D, Gurley E, Bodhan P, Hall E, Redford K, Gil G, Pandak WM (2004) Overexpression of cholesterol transporter StAR increases in vivo rates of bile acid synthesis in the rat and mouse. Hepatology 40:910–917

    PubMed  CAS  Google Scholar 

  22. Harris JD, Schepelmann S, Athanasopoulos T, Graham IR, Stannard AK, Mohri Z, Hill V, Hassall DG, Owen JS, Dickson G (2002) Inhibition of atherosclerosis in apolipoprotein-E-deficient mice following muscle transduction with adeno-associated virus vectors encoding human apolipoprotein-E. Gene Ther 9:21–29

    Article  PubMed  CAS  Google Scholar 

  23. Plump AS, Smith JD, Hayek T, alto-Setala K, Walsh A, Verstuyft JG, Rubin EM, Breslow JL (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71:343–353

    Article  PubMed  CAS  Google Scholar 

  24. Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R (1994) ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 14:133–140

    PubMed  CAS  Google Scholar 

  25. d’Uscio LV, Baker TA, Mantilla CB, Smith L, Weiler D, Sieck GC, Katusic ZS (2001) Mechanism of endothelial dysfunction in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 21:1017–1022

    PubMed  Google Scholar 

  26. Tamminen M, Mottino G, Qiao JH, Breslow JL, Frank JS (1999) Ultrastructure of early lipid accumulation in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 19:847–853

    PubMed  CAS  Google Scholar 

  27. Cyrus T, Witztum JL, Rader DJ, Tangirala R, Fazio S, Linton MF, Funk CD (1999) Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J Clin Invest 103:1597–1604

    Article  PubMed  CAS  Google Scholar 

  28. Zhang SH, Reddick RL, Piedrahita JA, Maeda N (1992) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258:468–471

    Article  PubMed  CAS  Google Scholar 

  29. Pandak WM, Bohdan P, Franklund C, Mallonee DH, Eggertsen G, Bjorkhem I, Gil G, Vlahcevic ZR, Hylemon PB (2001) Expression of sterol 12alpha-hydroxylase alters bile acid pool composition in primary rat hepatocytes and in vivo. Gastroenterology 120:1801–1809

    Article  PubMed  CAS  Google Scholar 

  30. Ren S, Hylemon P, Marques D, Hall E, Redford K, Gil G, Pandak WM (2004) Effect of increasing the expression of cholesterol transporters (StAR, MLN64, and SCP-2) on bile acid synthesis. J Lipid Res 45:2123–2131

    Article  PubMed  CAS  Google Scholar 

  31. Belcher JD, Egan JO, Bridgman G, Baker R, Flack JM (1991) A micro-enzymatic method to measure cholesterol and triglyceride in lipoprotein subfractions separated by density gradient ultracentrifugation from 200 microliters of plasma or serum. J Lipid Res 32:359–370

    PubMed  CAS  Google Scholar 

  32. Carlson SE, Goldfarb S (1977) A sensitive enzymatic method for determination of free and esterified tissue cholesterol. Clin Chim Acta 79:575–582

    Article  PubMed  CAS  Google Scholar 

  33. Babiker A, Diczfalusy U (1998) Transport of side-chain oxidized oxysterols in the human circulation. Biochim Biophys Acta 1392:333–339

    PubMed  CAS  Google Scholar 

  34. Babiker A, Andersson O, Lund E, Xiu RJ, Deeb S, Reshef A, Leitersdorf E, Diczfalusy U, Bjorkhem I (1997) Elimination of cholesterol in macrophages and endothelial cells by the sterol 27-hydroxylase mechanism. Comparison with high density lipoprotein-mediated reverse cholesterol transport. J Biol Chem 272:26253–26261

    Article  PubMed  CAS  Google Scholar 

  35. Lund E, Andersson O, Zhang J, Babiker A, Ahlborg G, Diczfalusy U, Einarsson K, Sjovall J, Bjorkhem I (1996) Importance of a novel oxidative mechanism for elimination of intracellular cholesterol in humans. Arterioscler Thromb Vasc Biol 16:208–212

    PubMed  CAS  Google Scholar 

  36. Westman J, Kallin B, Bjorkhem I, Nilsson J, Diczfalusy U (1998) Sterol 27-hydroxylase- and apoAI/phospholipid-mediated efflux of cholesterol from cholesterol-laden macrophages: evidence for an inverse relation between the two mechanisms. Arterioscler Thromb Vasc Biol 18:554–561

    PubMed  CAS  Google Scholar 

  37. Cali JJ, Hsieh CL, Francke U, Russell DW (1991) Mutations in the bile acid biosynthetic enzyme sterol 27-hydroxylase underlie cerebrotendinous xanthomatosis. J Biol Chem 266:7779–7783

    PubMed  CAS  Google Scholar 

  38. Oftebro H, Bjorkhem I, Skrede S, Schreiner A, Pederson JI (1980) Cerebrotendinous xanthomatosis: a defect in mitochondrial 26-hydroxylation required for normal biosynthesis of cholic acid. J Clin Invest 65:1418–1430

    Article  PubMed  CAS  Google Scholar 

  39. Meir K, Kitsberg D, Alkalay I, Szafer F, Rosen H, Shpitzen S, Avi LB, Staels B, Fievet C, Meiner V, Bjorkhem I, Leitersdorf E (2002) Human sterol 27-hydroxylase (CYP27) overexpressor transgenic mouse model. Evidence against 27-hydroxycholesterol as a critical regulator of cholesterol homeostasis. J Biol Chem 277:34036–34041

    Article  PubMed  CAS  Google Scholar 

  40. Hall E, Hylemon P, Vlahcevic Z, Mallonee D, Valerie K, Avadhani N, Pandak W (2001) Overexpression of CYP27 in hepatic and extrahepatic cells: role in the regulation of cholesterol homeostasis. Am J Physiol Gastrointest Liver Physiol 281:G293–G301

    PubMed  CAS  Google Scholar 

  41. Bouhlel MA, Staels B, Chinetti-Gbaguidi G (2008) Peroxisome proliferator-activated receptors–from active regulators of macrophage biology to pharmacological targets in the treatment of cardiovascular disease. J Intern Med 263:28–42

    PubMed  CAS  Google Scholar 

  42. Chinetti G, Lestavel S, Bocher V, Remaley AT, Neve B, Torra IP, Teissier E, Minnich A, Jaye M, Duverger N, Brewer HB, Fruchart JC, Clavey V, Staels B (2001) PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 7:53–58

    Article  PubMed  CAS  Google Scholar 

  43. Javitt NB (2002) 25R, 26-Hydroxycholesterol revisited: synthesis, metabolism, and biologic roles. J Lipid Res 43:665–670

    PubMed  CAS  Google Scholar 

  44. Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B (2009) Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev 89:147–191

    Article  PubMed  CAS  Google Scholar 

  45. Li T, Chen W, Chiang JY (2007) PXR induces CYP27A1 and regulates cholesterol metabolism in the intestine. J Lipid Res 48:373–384

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (30871021) of the People’s Republic of China (Yin, L), and the United States National Institutes of Health R01HL078898 (Ren, S).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sifeng Chen or Lianhua Yin.

About this article

Cite this article

Ning, Y., Xu, L., Ren, S. et al. StAR Overexpression Decreases Serum and Tissue Lipids in Apolipoprotein E-deficient Mice. Lipids 44, 511–519 (2009). https://doi.org/10.1007/s11745-009-3299-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-009-3299-1

Keywords

Navigation