Skip to main content
Log in

From Molecular Fossils of Bacterial Hopanoids to the Formation of Isoprene Units: Discovery and Elucidation of the Methylerythritol Phosphate Pathway

  • Review
  • Published:
Lipids

Abstract

Investigations on the biosynthesis of bacterial triterpenoids of the hopane series led to the unexpected discovery of an alternative mevalonate independent pathway for the formation of isoprene units. Methylerythritol phosphate, already presenting the C5 branched isoprene skeleton, is the key intermediate. This pathway was independently characterized in ginkgo embryos for the formation of diterpenoids. It is present in most bacteria and in the plastids of all organisms belonging to phototrophic phyla. The key steps of the discovery and elucidation of this metabolic route are presented in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DMAPP:

Dimethylallyl diphosphate

DX:

1-Deoxy-d-xylulose

DXP:

1-Deoxy-d-xylulose 5-phosphate

HMBPP:

(E)-4-Hydroxy-3-methylbut-2-enyl diphosphate

IPP:

Isopentenyl diphosphate

ME:

2-C-methyl-d-erythritol

MEcPP:

2-C-methyl-d-erythritol 2,4-cyclodiphosphate

MEP:

2-C-methyl-d-erythritol 4-phosphate

MVA:

Mevalonic acid

References

  1. Bruan B, Shey J, Gerst N, Wilson WK, Schroepfer GJ Jr (1996) Silver ion high pressure liquid chromatography provides unprecedented separation of sterols: application to the enzymatic formation of cholesta-5,8-dien-3β-ol. Proc Natl Acad Sci USA 93:11603–11608

    Google Scholar 

  2. Rohmer M, Brandt RD, Ourisson G (1972) Hydrosoluble complexes of sterols, sterol esters and their precursors in Zea mays. Eur J Biochem 36:172–179

    Google Scholar 

  3. Rohmer M, Brandt RD (1973) Les stérols et leurs précurseurs chez Astasia longa Pringsheim. Eur J Biochem 36:446–454

    PubMed  CAS  Google Scholar 

  4. Rohmer M, Ourisson G, Benveniste P, Bimpson T (1975) Sterol biosynthesis in heterotrophic plant parasites. Phytochemistry 14:727–730

    CAS  Google Scholar 

  5. Whiters N, Kokke WCMC, Fennical WH, Rohmer M, Djerassi C (1979) Isolation of sterols with cyclopropane containing side-chains from a cultured marine alga. Tetrahedron Lett 3605–3608

  6. Rohmer M, Kokke WCMC, Fennical WH, Djerassi C (1980) Isolation of two new C30 sterols, (24E)-24-n-propylidenecholesterol and 24-n-propylcholesterol from a cultured marine Chrysophyte. Steroids 35:219–231

    PubMed  CAS  Google Scholar 

  7. Kho E, Imagawa DK, Rohmer M, Kashman Y, Djerassi C (1981) 22. Isolation and structure elucidation of conicasterol and theonellasterol, two new 4-methylenesterols from the Red Sea sponge Theonella conica and Theonella swinhoei. J Org Chem 46:1836–1839

    CAS  Google Scholar 

  8. Raederstorff D, Rohmer M (1987) The action of systemic fungicides tridemorph and fenpropimorph on sterol biosynthesis by the soil amoeba Acanthamoeba polyphaga. Eur J Biochem 164:421–426

    PubMed  CAS  Google Scholar 

  9. Raederstorff D, Rohmer M (1987) Sterol biosynthesis via cycloartenol and other biochemical features related to photosynthetic phyla in the amoebae Naegleria lovaniensis and Naegleria gruberi. Eur J Biochem 164:427–434

    PubMed  CAS  Google Scholar 

  10. Hoehn-Thierry P (1992) Lipides et biosynthèse de stérols chez le mildiou, Plasmopara viticola, parasite strict de la vigne. PhD Thesis, Université de Haute Alsace, Mulhouse, France

  11. Ourisson G, Albrecht P (1992) Hopanoids. 1. Geohopanoids: the most abundant natural products on earth? Acc Chem Res 25:398–402

    CAS  Google Scholar 

  12. Rohmer M, Bouvier-Navé P, Ourisson G (1984) Distribution of hopanoid triterpenes in prokaryotes. J Gen Microbiol 130:1137–1150

    CAS  Google Scholar 

  13. Förster HJ, Biemann K, Haigh WG, Tattrie NH, Colvin JR (1973) The structure of novel C35 pentacyclic terpenes from Acetobacter xylinum. Biochem J 135:133–143

    PubMed  Google Scholar 

  14. Haigh WG, Förster HJ, Biemann K, Tattrie NH, Colvin JR (1973) Induction of orientation of bacterial cellulose microfibrils by a novel terpenoid from Acetobacter xylinum. Biochem J 135:145–149

    PubMed  CAS  Google Scholar 

  15. Rohmer M, Ourisson G (1976) Structure des bactériohopanetétrols d’Acetobacter xylinum. Tetrahedron Lett 3633–3636

  16. Rohmer M, Ourisson G (1976) Dérivés du bactériohopane: variations structurales et répartition. Tetrahedron Lett 3637–3640

  17. Rohmer M, Ourisson G (1986) Unsaturated bacteriohopanepolyols from Acetobacter aceti ssp. xylinum. J Chem Res (S) 356–357; (M) 3037–3059

  18. Rohmer M, Ourisson G (1976) Méthylhopanes d’Acetobacter xylinum et d’Acetobacter rancens. Tetrahedron Lett 3633–3636

  19. Zundel M, Rohmer M (1985) Prokaryotic triterpenoids. 1. 3β-Methylhopanoids from Acetobacter species and Methylococcus capsulatus. Eur J Biochem 150:23–27

    PubMed  CAS  Google Scholar 

  20. Bisseret P, Zundel M, Rohmer M (1985) Prokaryotic triterpenoids. 2. 2β-Methylhopanoids from Methylobacterium organophilum and Nostoc muscorum, a new series of prokaryotic triterpenoids. Eur J Biochem 150:29–34

    PubMed  CAS  Google Scholar 

  21. Stampf P, Herrmann D, Bisseret P, Rohmer M (1991) 2α-Methylhopanoids: first recognition in the bacterium Methylobacterium organophilum and obtention via sulphur induced isomerization of 2β-methylhopanoids. An account for their presence in sediments. Tetrahedron 47:7081–7090

    CAS  Google Scholar 

  22. Rohmer M (1993) The biosynthesis of triterpenoids of the hopane series in Eubacteria: a mine of new enzyme reactions. Pure Appl Chem 65:1293–1298

    CAS  Google Scholar 

  23. Rohmer M, Bouvier P, Ourisson G (1979) Molecular evolution of biomembranes: structural equivalents and phylogenetic precursors of sterols. Proc Natl Acad Sci USA 76:847–851

    PubMed  CAS  Google Scholar 

  24. Ourisson G, Rohmer M, Poralla K (1987) Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annu Rev Microbiol 41:301–333

    PubMed  CAS  Google Scholar 

  25. Poralla K, Härtner T, Kannenberg E (1984) Effect of temperature and pH on the hopanoid content of Bacillus acidocaldarius. FEMS Microbiol Lett 23:253–256

    CAS  Google Scholar 

  26. Hermans MAF, Neuss B, Sahm H (1991) Content and composition of hopanoids in Zymomonas mobilis under various growth conditions. J Bacteriol 173:5592–5595

    PubMed  CAS  Google Scholar 

  27. Berry AM, Harriott OT, Moreau RA, Osman SF, Benson DR, Jones AD (1993) Hopanoid lipids compose the Frankia vesicles envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proc Natl Acad Sci USA 90:6091–6094

    PubMed  CAS  Google Scholar 

  28. Poralla K, Muth G, Härtner T (2000) Hopanoids are formed during transition from substrate to aerial hyphae in Streptomyces coelicolor A3(2). FEMS Microbiol Lett 189:93–95

    PubMed  CAS  Google Scholar 

  29. Rohmer M (1999) A mevalonate-independent route to isopentenyl diphosphate. In: Cane DE (ed) Comprehensive natural products chemistry, isoprenoids including steroids and carotenoids, vol 2. Pergamon, Oxford, pp 45–68

    Google Scholar 

  30. Flesch G, Rohmer M (1988) Prokaryotic triterpenoids. The biosynthesis of the bacteriohopane skeleton: formation of isoprenic units from two distinct acetate pools and a novel type of carbon/carbon linkage between a triterpene and d-ribose. Eur J Biochem 175:405–411

    PubMed  CAS  Google Scholar 

  31. Rohmer M, Sutter B, Sahm H (1989) Bacterial sterol surrogates. Biosynthesis of the side-chain of bacteriohopanetetrol and of a carbocyclic carbapseudopentose from 13C-labelled glucose in Zymomonas mobilis. J Chem Soc Chem Commun 1471–1472

  32. Renoux JM, Rohmer M (1985) Prokaryotic triterpenoids. New bacteriohopanetetrol cyclitol ethers from the methylotrophic bacterium Methylobacterium organophilum. Eur J Biochem 151:405–410

    PubMed  CAS  Google Scholar 

  33. Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524

    PubMed  CAS  Google Scholar 

  34. Rohmer M, Seemann M, Horbach S, Sahm H (1996) Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. J Am Chem Soc 118:2564–2566

    CAS  Google Scholar 

  35. Wong U, Cox RJ (2007) The chemical mechanisms of d-1-deoxyxylulose 5-phosphate reductoisomerase from Escherichia coli. Angew Chem Int Ed 46:4926–4929

    CAS  Google Scholar 

  36. Rohmer M (2007) Diversity in isoprenoid biosynthesis: the methylerythritol phosphate pathway in plastids and plants. Pure Appl Chem 79:739–751

    CAS  Google Scholar 

  37. Broers STJ (1994) I Über die frühen Stufen der Biosynthese von Isoprenoiden in Escherichia coli. II. Beitrag zur Aufklärung der Biosyntheses von Vitamin B12 in Propionibacterium shermanii. PhD Thesis Nb 10978, Eidgenössische Technische Hochschule, Zürich, Switzerland

  38. Duvold T, Bravo JM, Pale-Grosdemange C, Rohmer M (1997) Biosynthesis of 2-C-methyl-d-erythritol, a putative C5 intermediate in the mevalonate-independent pathway for isoprenoid biosynthesis. Tetrahedron Lett 38:4769–4772

    CAS  Google Scholar 

  39. Duvold T, Cali P, Bravo JM, Rohmer M (1997) Incorporation of 2-C-methyl-d-erythritol, a putative intermediate in the mevalonate independent pathway, into ubiquinone and menaquinone of Escherichia coli. Tetrahedron Lett 38:6181–6184

    CAS  Google Scholar 

  40. Charon L, Hoeffler JF, Pale-Grosdemange C, Lois LM, Campos N, Boronat A, Rohmer M (2000) Deuterium labeled isotopomers of 2-C-methyl-d-erythritol 4-phosphate pathway for isoprenoid biosynthesis. Biochem J 346:737–742

    PubMed  CAS  Google Scholar 

  41. Schwarz M (1994) Terpen-Biosynthese in Ginkgo biloba: eine überraschende Geschichte. PhD Thesis Nb 10951, Eidgenössische Technische Hochschule, Zürich, Switzerland

  42. Schwarz M, Arigoni D (1999) Ginkgolide biosynthesis. In: Cane DE (ed) Comprehensive natural products chemistry, isoprenoids including steroids and carotenoids, vol 2. Pergamon, Oxford, pp 367–400

    Google Scholar 

  43. Schwender J, Seemann M, Lichtenthaler HK, Rohmer M (1996) Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway. Biochem J 316:73–80

    PubMed  CAS  Google Scholar 

  44. Disch A, Schwender J, Muller C, Lichtenthaler HK, Rohmer M (1998) Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714. Biochem J 333:381–388

    PubMed  CAS  Google Scholar 

  45. Schwender J, Zeidler J, Gröner R, Müller C, Focke M, Braun S, Lichtenthaler FW, Lichtenthaler HK (1997) Incorporation of 1-deoxy-d-xylulose into isoprene and phytol by higher plants and algae. FEBS Lett 414:129–134

    PubMed  CAS  Google Scholar 

  46. Schwender J, Gemünden C, Lichtenthaler HK (2001) Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids. Planta 212:416–423

    PubMed  CAS  Google Scholar 

  47. Lichtenthaler HK, Schwender J, Disch A, Rohmer M (1996) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett 400:271–274

    Google Scholar 

  48. Zeidler JG, Lichtenthaler HK, May HU, Lichtenthaler FW (1996) Is isoprene emitted by plants synthesized via the novel isopentenyl pyrophosphate pathway? Z Naturforsch 52c:15–23

    Google Scholar 

  49. Zeidler J, Lichtenthaler HK (2001) Biosynthesis of 2-methyl-3-buten-2-ol emitted from needles of Pinus ponderosa via the non-mevalonate DOXP/MEP pathway for isoprenoid biosynthesis. Planta 213:323–326

    PubMed  CAS  Google Scholar 

  50. Eisenreich W, Sagner S, Zenk MH, Bacher A (1997) Monoterpenoid essential oils are not of mevalonoid origin. Tetrahedron Lett 38:3889–3892

    CAS  Google Scholar 

  51. Adam KP, Thiel R, Zapp J, Becker H (1998) Involvement of the mevalonic acid pathway and the glyceraldehyde phosphate-pyruvate pathway in terpenoid biosynthesis of the liverworts Ricciocarpos natans and Conocephalum conicum. Arch Biochem Biophys 354:181–187

    PubMed  CAS  Google Scholar 

  52. Eisenreich W, Menhard B, Hylands PJ, Zenk MH, Bacher A (1997) Studies on the biosynthesis of taxol: the taxane carbon skeleton is not of mevalonoid origin. Proc Natl Acad Sci USA 93:6431–6436

    Google Scholar 

  53. Knöss W, Reuter B, Zapp J (1997) Biosynthesis of the labdane diterpene marrubiin in Marrubium vulgare via a non-mevalonate pathway. Biochem J 326:449–454

    PubMed  Google Scholar 

  54. Hayashi T, Asai T, Sankawa U (1999) Mevalonate-independent biosynthesis of bicyclic and tetracyclic diterpenes of Scoparia dulcis L. Tetrahedron Lett 40:8239–8243

    CAS  Google Scholar 

  55. Arigoni D, Sagner S, Latzel C, Eisenreich W, Bacher A, Zenk MH (1997) Terpenoid biosynthesis from 1-deoxy-d-xylulose in higher plants by an intramolecular skeletal rearrangement. Proc Natl Acad Sci USA 94:10600–10605

    PubMed  CAS  Google Scholar 

  56. Rodríguez-Concepción M, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130:1079–1089

    PubMed  Google Scholar 

  57. Eisenreich W, Bacher A, Arigoni D, Rohdich F (2004) Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci 61:1401–1426

    PubMed  CAS  Google Scholar 

  58. Sprenger GA, Schörken U, Wiegert T, Grolle S, de Graaf A, Taylor SV, Begley TP, Bringer-Meyer S, Sahm H (1998) Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-d-xylulose 5-phosphate precursor to isoprenoids, thiamin and pyridoxol. Proc Natl Acad Sci USA 94:12857–12862

    Google Scholar 

  59. Lois LM, Campos N, Rosa-Putra S, Danielsen K, Rohmer M, Boronat A (1998) Cloning and characterization of a gene from Escherichia coli encoding a novel transketolase-like enzyme that catalyzes the synthesis of d-1-deoxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamin and pyridoxol biosynthesis. Proc Natl Acad Sci USA 95:2105–2110

    PubMed  CAS  Google Scholar 

  60. Lange BM, Wildung MW, McCaskill D, Croteau R (1998) A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway. Proc Natl Acad Sci USA 95:2100–2104

    PubMed  CAS  Google Scholar 

  61. Kuzuyama T, Shimizu T, Takahashi S, Seto H (1998) Direct formation of 2-C-methyl-d-erythritol 4-phosphate from 1-deoxy-d-xylulose 5-phosphate reductoisomerase: a novel enzyme in the non-mevalonate pathway to isopentenyl diphosphate. Tetrahedron Lett 39:4509–4512

    CAS  Google Scholar 

  62. Takahashi S, Kuzuyama T, Watanabe H, Seto H (1998) A 1-deoxy-d-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-d-erythritol 4-phosphate in an alternative nonmevalonate pathway for isoprenoid biosynthesis. Proc Natl Acad sci USA 95:9879–9884

    PubMed  CAS  Google Scholar 

  63. Hoeffler JF, Tritsch D, Grosdemange-Billiard C, Rohmer M (2002) Isoprenoid biosynthesis via the methylerythritol phosphate pathway: mechanistic investigations on the 1-deoxy-d-xylulose 5-phosphate synthase. Eur J Biochem 269:446–4457

    Google Scholar 

  64. Follens A, Veiga-da-Cunha M, Merckx R, Van Schaftingen E, Van Eldere J (1999) acs1of Haemophilus influenzae type a capsulation locus region II encodes a bifunctional ribulose 5-phosphate reductase-CDP-ribitol pyrophosphorylase. J Bacteriol 181:2001–2007

    PubMed  CAS  Google Scholar 

  65. Rohdich F, Wungsintaweekul J, Fellermeier M, Sagner S, Herz S, Kis K, Eisenreich W, Bacher A, Zenk MH (1999) Cytidine 5′-triphosphate-dependent biosynthesis of isoprenoids: YgbP protein of Escherichia coli catalyzes the formation of 4-diphosphocytidyl-2-C-methylerythritol. Proc Natl Acad Sci USA 96:11758–11763

    PubMed  CAS  Google Scholar 

  66. Lüttgen H, Rohdich F, Herz S, Wungsintaweekul J, Hecht S, Schuhr CA, Fellermeier M, Sagner S, Zenk MH, Bacher A, Eisenreich W (2000) Biosynthesis of terpenoids: YchB protein of Escherichia coli phosphorylates the 2-hydroxy group of 4-diphosphocytidyl-2C-methyl-d-erythritol. Proc Natl Acad Sci USA 97:1062–1067

    PubMed  Google Scholar 

  67. Herz S, Wungsintaweekul J, Schuhr C, Hecht S, Lüttgen Sagner S, Fellermeier M, Eisenreich W, Zenk MH, Bacher A, Rohdich F (2000) Biosynthesis of terpenoids: YgbB protein converts 4-diphosphocytidyl-2C-methyl-d-erythritol 2-phosphate into 2C-methyl-d-erythritol-2, 4-cyclodiphosphate. Proc Natl Acad Sci USA 97:2486–2490

    PubMed  CAS  Google Scholar 

  68. Rohdich F, Wungsintaweekul J, Eisenreich W, Richter G, Schuhr CA, Hecht S, Zenk MH, Bacher A (2000) Biosynthesis of terpenoids: 4-diphosphocytidyl-2C-methyl-d-erythritol synthase of Arabidopsis thaliana. Proc Natl Acad Sci USA 97:6451–6456

    PubMed  CAS  Google Scholar 

  69. Rohdich F, Wungsintaweekul J, Lüttgen Fischer M, Eisenreich W, Schuhr CA, Fellermeier M, Schramek N, Zenk MH, Bacher A (2000) Biosynthesis of terpenoids: 4-diphosphocytidyl-2-C-methyl-d-erythritol kinase from tomato. Proc Natl Acad Sci USA 97:8251–8256

    PubMed  CAS  Google Scholar 

  70. Kuzuyama T, Takagi M, Kaneda K, Dairi T, Seto H (2000) Formation of 4-(cytidine 5′-diphospho)-2-C-methyl-d-erythritol from 2-C-methyl-d-erythritol 4-phosphate by 2-C-methyl-d-erythritol 4-phosphate cytidylyl transferase, a new enzyme of the nonmevalonate pathway. Tetrahedron Lett 41:703–706

    CAS  Google Scholar 

  71. Campos N, Rodríguez-Concepción M, Sauret-Güeto S, Gallego F, Lois LM, Boronat A (2001) Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate: a novel system for the genetic analysis of the 2-C-methyl-d-erythritol 4-phosphate pathway for isoprenoid biosynthesis. Biochem J 353:59–67

    PubMed  CAS  Google Scholar 

  72. Kuzuyama T, Takagi M, Kaneda K, Watanabe H, Dairi T, Seto H (2000) Studies on the nonmevalonate pathway: conversion of 4-(cytidine 5′-diphospho)-2-C-methyl-d-erythritol to its 2-phospho derivative by 4-(cytidine 5′-diphospho)-2-C-methyl-d-erythritol kinase. Tetrahedron Lett 41:2925–2928

    CAS  Google Scholar 

  73. Takagi M, Kuzuyama T, Kaneda K, Watanabe H, Dairi T, Seto H (2000) Studies on the nonmevalonate pathway: formation of 2-C-methyl-d-erythritol 2, 4-cyclodiphosphate from 2-phospho-4-(cytidine 5′-diphospho)-2-C-methyl-d-erythritol. Tetrahedron Lett 41:3395–3398

    CAS  Google Scholar 

  74. Campos N, Rodríguez-Concepción M, Seemann M, Rohmer M, Boronat A (2001) Identification of gcpE as a novel gene of the 2-C-methyl-d-erythritol 4-phosphate pathway for isoprenoid biosynthesis in Escherichia coli. FEBS Lett 488:170–173

    PubMed  CAS  Google Scholar 

  75. Altincicek B, Kollas AK, Eberl M, Wiesner J, Sanderbrand S, Hintz M, Beck E, Jomaa H (2001) LytB, a novel gene of the 2-C-methyl-d-erythritol 4-phosphate pathway of isoprenoid biosynthesis in Escherichia coli. FEBS Lett 499:37–40

    PubMed  CAS  Google Scholar 

  76. Hecht S, Eisenreich W, Adam P, Amslinger S, Kis K, Bacher A, Arigoni D, Rohdich F (2001) Studies on the nonmevalonate pathway to terpenes: the role of GcpE (IspG) protein. Proc Natl Acad Sci USA 98:14837–14842

    PubMed  CAS  Google Scholar 

  77. Rohdich F, Hecht S, Gärtner K, Adam P, Krieger C, Amslinger S, Arigoni D, Bacher A, Eisenreich W (2002) Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein. Proc Natl Acad Sci USA 99:1158–1163

    PubMed  CAS  Google Scholar 

  78. Seemann M, Campos N, Rodríguez-Concepción M, Hoeffler JF, Grosdemange-Billiard C, Boronat A, Rohmer M (2002) Isoprenoid biosynthesis via the methylerythritol phosphate pathway: accumulation of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate in a gcpE deficient mutant of Escherichia coli. Tetrahedron Lett 43:775–778

    CAS  Google Scholar 

  79. Seemann M, Campos N, Rodríguez-Concepción M, Ibañez E, Duvold T, Tritsch D, Boronat A, Rohmer M (2002) Isoprenoid biosynthesis via the methylerythritol phosphate pathway: enzymatic conversion of methylerythritol cyclodiphosphate into a phosphorylated derivative of (E)-methylbut-2-ene-1, 4-diol. Tetrahedron Lett 43:1413–1415

    CAS  Google Scholar 

  80. Wolff M, Seemann M, Grosdemange-Billiard C, Tritsch D, Campos N, Rodríguez-Concepción M, Boronat A, Rohmer M (2002) Isoprenoid biosynthesis via the methylerythritol phosphate pathway. (E)-4-Hydroxy-3-methylbut-2-enyl diphosphate: chemical synthesis and formation from methylerythritol cyclodiphosphate by a cell-free system from Escherichia coli. Tetrahedron Lett 43:2555–2559

    CAS  Google Scholar 

  81. Hintz M, Reichenberg A, Bahr U, Gschwind R, Kollas AK, Beck E, Wiesner J, Eberl M, Jomaa H (2001) Identification of (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate as major activator for human γδ T cells in Escherichia coli. FEBS Lett 509:317–322

    PubMed  CAS  Google Scholar 

  82. Adam P, Hecht S, Eisenreich W, Kaiser J, Gräwert T, Arigoni D, Bacher A, Rohdich F (2002) Biosynthesis of terpenes: studies on 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase. Proc Natl Acad Sci USA 99:12108–12113

    PubMed  CAS  Google Scholar 

  83. Seemann M, Tse Sum Bui B, Wolff M, Tritsch D, Campos N, Boronat B, Marquet A, Rohmer M (2002) Isoprenoid biosynthesis via the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE) is a [4Fe–4S] protein. Angew Chem Int Ed Engl 114:4513–4515

    Google Scholar 

  84. Rohdich F, Zepeck F, Adam P, Hecht S, Kaiser J, Laupitz R, Gräwert T, Amslinger S, Eisenreich W, Bacher A, Arigoni D (2003) The deoxyxylulose phosphate pathway of isoprenoid biosynthesis: studies on the mechanisms of the reactions catalyzed by the IspG and IspH protein. Proc Natl Acad Sci USA 100:1586–1591

    PubMed  CAS  Google Scholar 

  85. Kollas AK, Duin EC, Eberl M, Altincicek B, Hintz M, Reichenberg A, Henschker D, Henne A, Steinbrecher I, Ostrovsky DN, Hedderich R, Beck E, Jomaa H, Wiesner J (2002) Functional characterization of GcpE, an essential enzyme of the non-mevalonate pathway of isoprenoid biosynthesis. FEBS Lett 532:432–436

    PubMed  CAS  Google Scholar 

  86. Adedeji D, Hernandez H, Wiesner J, Köhler U, Jomaa H, Duin EC (2007) Possible direct involvement of the active-site [4Fe–4S] cluster of the GcpE enzyme from Thermus thermophilus in the conversion of MEcPP. FEBS Lett 581:279–283

    PubMed  CAS  Google Scholar 

  87. Wolff M, Seemann M, Tse Sum Bui B, Frapart Y, Tritsch D, Garcia-Estrabot A, Rodríguez-Concepción M, Boronat A, Marquet A, Rohmer M (2003) Isoprenoid biosynthesis via the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-but-2-enyl diphosphate reductase (LytB/IspH) from Escherichia coli is a [4Fe–4S] protein. FEBS Lett 541:115–120

    PubMed  CAS  Google Scholar 

  88. Altincicek B, Duin CE, Reichenberg A, Hedderich R, Kollas AK, Hintz M, Wagner S, Wiesner J, Beck E, Jomaa H (2002) LytB protein catalyzes the terminal step of the 2-C-methyl-d-erythritol-4-phosphate pathway of isoprenoid biosynthesis. FEBS Lett 532:437–440

    PubMed  CAS  Google Scholar 

  89. Laupitz R, Gräwert T, Rieder C, Zepeck F, Bacher A, Arigoni D, Rohdich F, Eisenreich W (2004) Stereochemical studies on the making and unmaking of isopentenyl diphosphate in different biological systems. Chem Biodiv 1:1367–1376

    CAS  Google Scholar 

  90. Gräwert T, Kaiser J, Zepeck F, Laupitz R, Hecht S, Amslinger S, Schramek N, Schleicher E, Weber S, Haslbeck M, Buchner J, Rieder C, Arigoni D, Bacher A, Eisenreich W, Rohdich F (2004) IspH protein of Escherichia coli: studies on iron-sulfur cluster implementation and catalysis. J Am Chem Soc 126:12847–12855

    PubMed  Google Scholar 

  91. Seemann M, Wegner P, Schünemann V, Tse Sum Bui B, Wolff M, Marquet A, Trautwein AX, Rohmer M (2005) Isoprenoid biosynthesis via the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE) from Arabidopsis thaliana is a [4Fe–4S] protein. J Biol Inorg Chem 10:131–137

    PubMed  CAS  Google Scholar 

  92. Okada K, Hase T (2005) Cyanobacterial non-mevalonate pathway: (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase interacts with ferredoxin in Thermosynechococcus elongatus BP-1. J Biol Chem 280:20672–20679

    PubMed  CAS  Google Scholar 

  93. Röhrich RC, Englert N, Troschke K, Reichenberg A, Hintz M, Seeber F, Balconi E, Aliverti A, Zanetti A, Köhler U, Pfeiffer M, Beck E, Jomaa H, Wiesner J (2005) Reconstitution of an apicoplast-localised electron transfer pathway involved in the isoprenoid biosynthesis of Plasmodium falciparum. FEBS Lett 579:6433–6438

    PubMed  Google Scholar 

  94. Seemann M, Tse Sum Bui B, Wolff M, Miginiac-Maslow M, Rohmer M (2006) Isoprenoid biosynthesis in plant chloroplasts via the MEP pathway: direct thylakoid/ferredoxin-dependent photoreduction of GcpE/IspG. FEBS Lett 580:1547–1552

    PubMed  CAS  Google Scholar 

  95. Arigoni D, Eisenreich W, Latzel C, Sagner S, Radykewicz T, Zenk MH, Bacher A (1999) Dimethylallyl pyrophosphate is not the committed precursor of isopentenyl diphosphate during terpenoid biosynthesis from 1-deoxyxylulose in higher plants. Proc Natl Acad Sci USA 96:1309–1314

    PubMed  CAS  Google Scholar 

  96. Giner JL, Jaun B, Arigoni D (1998) Biosynthesis of isoprenoids in Escherichia coli: the fate of the 3-H and 4-H atoms of 1-deoxy-d-xylulose. J Chem Soc Chem Commun 1857–1858

  97. Rieder C, Jaun B, Arigoni D (2000) On the early steps of cineol biosynthesis in Eucalyptus globulus. Helv Chim Acta 83:2504–2513

    CAS  Google Scholar 

  98. Hoeffler JF, Hemmerlin A, Grosdemange-Billiard C, Bach TJ, Rohmer M (2002) Isoprenoid biosynthesis in higher plants and in Escherichia coli: on the branching in the methylerythritol phosphate pathway and the independent synthesis of isopentenyl diphosphate and dimethylallyl diphosphate. Biochem J 366:573–582

    PubMed  CAS  Google Scholar 

  99. Adam KP, Zapp J (1998) Biosynthesis of the isoprene units of chamomile sesquiterpenes. Phytochemistry 48:953–959

    CAS  Google Scholar 

  100. De-Eknamkul W, Potduang B (2003) Biosynthesis of β-sitosterol and stigmasterol in Croton sublyratus proceeds via a mixed origin of isoprene units. Phytochemistry 62:389–398

    PubMed  CAS  Google Scholar 

  101. Schuhr CA, Radykewicz T, Sagner S, Latzel C, Zenk MH, Arigoni D, Bacher A, Rohdich F, Eisenreich W (2003) Quantitative assessment of crosstalk between two isoprenoid biosynthesis pathways in plants by NMR spectroscopy. Phytochemistry Rev 2:3–16

    CAS  Google Scholar 

  102. Nabeta K, Ishikawa T, Okuyama H (1995) Sesqui- and di-terpene biosynthesis from 13C labelled acetate and mevalonate in cultured cells of Heteroscyphus planus. J Chem Soc [Perkin 1] 3111–3115

  103. Itoh D, Karunagoda RP, Fushie T, Katoh K, Nabeta K (2000) Nonequivalent labeling of the phytyl side chain of chlorophyll a in callus of the hornwort Acanthoceros punctatus. J Nat Prod 63:1090–1093

    PubMed  CAS  Google Scholar 

  104. Hemmerlin A, Hoeffler JF, Meyer O, Tritsch D, Kagan IA, Grosdemange-Billiard C, Rohmer M, Bach TJ (2003) Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem 278:26666–26676

    PubMed  CAS  Google Scholar 

  105. Piel J, Donath J, Bandemer K, Boland W (1998) Mevalonate-independent biosynthesis of terpenoid volatiles in plants: induced and constitutive emission of volatiles. Angew Chem Int Ed 37:2478–2481

    CAS  Google Scholar 

  106. Jux A, Gleixner G, Boland W (2001) Classification of terpenoids according to the methylerythritol phosphate or the mevalonate pathway with natural 12C:13C isotope ratios: dynamic allocation of resources in induced plants. Angew Chem Int Ed 40:2091–2093

    CAS  Google Scholar 

  107. Dudareva N, Andersson S, Orlova I, Gatto N, Reichelt M, Rhodes D, Boland W, Gershenzon J (2005) The nonmevalonate pathway supports both monoterpene and sesquiterpene in snapdragon flowers. Proc Natl Acad Sci USA 102:933–938

    PubMed  CAS  Google Scholar 

  108. Rosa-Putra S, Disch A, Bravo JM, Rohmer M (1998) Distribution of mevalonate and glyceraldehyde phosphate/pyruvate routes to isoprenoid biosynthesis in some gram-negative bacteria and mycobacteria. FEMS Microbiol Lett 164:169–175

    Google Scholar 

  109. Rohmer M, Grosdemange-Billiard C, Seemann M, Tritsch D (2004) Isoprenoid biosynthesis as a novel target for antibacterial and antiparasitic drugs. Curr Opin Invest Drugs 5:154–162

    CAS  Google Scholar 

  110. Jomaa H, Wiesner J, Sanderbrand S, Altincicek B, Weidemeyer C, Hintz M, Türbachova I, Eberl M, Zeidler J, Lichtenthaler HK, Soldati D, Beck E (1999) Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285:1573–1576

    PubMed  CAS  Google Scholar 

  111. Singh N, Chevé G, Avery MA, McCurdy CR (2007) Targeting the methylerythritol phosphate (MEP) pathway for novel antimalarial, antibacterial and herbicidal drug discovery: inhibition of 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) enzyme. Curr Pharm Des 13:1161–1177

    PubMed  CAS  Google Scholar 

  112. Kuemmerle HP, Murakawa T, Sakamoto H, Sato N, Konishi T, De Santis F (1985) Fosmidomycin, a new phosphonic acid antbiotic Part II 1. Human pharmacokinetics 2. Preliminary early phase II a clinical studies. Int J Clin Pharmacol Ther Toxicol 23:521–528

    PubMed  CAS  Google Scholar 

  113. Kuzuyama T, Shimizu T, Takahashi S, Seto H (1998) Fosmidomycin, a specific inhibitor of 1-deoxy-d-xylulose- 5-phosphate reductoisomerase in the nonmevalonate pathway for terpenoid biosynthesis. Tetrahedron Lett 39:7913–7916

    CAS  Google Scholar 

  114. Shigi Y (1989) Inhibition of bacterial isoprenoid synthesis by fosmidomycin, a phosphonic acid-containing antibiotic. J Antimicrob Chemother 24:131–145

    PubMed  CAS  Google Scholar 

  115. Lell B, Ruangweerayut R, Wiesner J, Anoumou Missinou M, Schindler A, Baranek T, Hintz M, Hutchinson D, Jomaa H, Kremsner PG (2003) Fosmidomycin, a novel chemotherapeutic for malaria. Antimicrob Agents Chemother 47:735–738

    PubMed  CAS  Google Scholar 

  116. Oyakhirome S, Issifou S, Pongratz P, Barondi F, Ramharter M, Kun J, Lell B, Kremsner P (2007) Fosmidomycin–clindamycin versus sulfadoxine-pyrimethamine in the treatment of Plasmodium falciparum malaria: a randomized controlled trial. Antimicrob Agents Chemother 51:1869–1871

    PubMed  CAS  Google Scholar 

  117. Rohmer M (2008) Non-programmed research: discovery of the mevalonate-independent methylerythritol phosphate pathway for the formation of isoprene units in bacteria and plants. Inform 19:482–485

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by a grant from the “Agence Nationale de la Recherche” (grant Nb ANR-05-BLAN-0217-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Rohmer.

About this article

Cite this article

Rohmer, M. From Molecular Fossils of Bacterial Hopanoids to the Formation of Isoprene Units: Discovery and Elucidation of the Methylerythritol Phosphate Pathway. Lipids 43, 1095–1107 (2008). https://doi.org/10.1007/s11745-008-3261-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-008-3261-7

Keywords

Navigation