Skip to main content
Log in

Diversity of the Enzymatic Activity in the Lipoxygenase Gene Family of Arabidopsis thaliana

  • Original Article
  • Published:
Lipids

Abstract

Lipoxygenases (LOX) catalyze the oxygenation of polyunsaturated fatty acids, the first step in the biosynthesis of a large group of biologically active fatty acid metabolites collectively named oxylipins. In the present study we report the characterization of the enzymatic activity of the six lipoxygenases found in the genome of the model plant Arabidopsis thaliana. Recombinant expressed AtLOX-1 and AtLOX-5 had comparable oxygenase activity with either linoleic acid or linolenic acid. AtLOX-2, AtLOX-3, AtLOX-4 and AtLOX-6 displayed a selective oxygenation of linolenic acid. Analyses by high-performance liquid chromatography and gas chromatography-mass spectrometry demonstrated that AtLOX-1 and AtLOX-5 are 9S-lipoxygenases, and AtLOX-2, AtLOX-3, AtLOX-4 and AtLOX-6 are 13S-lipoxygenases. None of the enzymes had dual positional specificity. The determined activities correlated with that predicted by their phylogenetic relationship to other biochemically-characterized plant lipoxygenases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AtLOX:

Lipoxygenase from Arabidopsis thaliana

GC-MS:

Gas–liquid chromatography-mass spectrometry

HOD:

Hydroxyoctadecadienoic acid

LOX:

Lipoxygenase

SP-HPLC:

Straight-phase HPLC

References

  1. Brash AR (1999) Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 274:23679–23682

    Article  PubMed  CAS  Google Scholar 

  2. Liavonchanka A, Feussner I (2006) Lipoxygenases: occurrence, functions and catalysis. J Plant Physiol 163:348–357

    Article  PubMed  CAS  Google Scholar 

  3. Gardner HW (1991) Recent investigations into the lipoxygenase pathway of plants. Biochim Biophys Acta 1084:221–239

    PubMed  CAS  Google Scholar 

  4. Weber H (2002) Fatty acid-derived signals in plants. Trends Plant Sci 7:217–224

    Article  PubMed  CAS  Google Scholar 

  5. Howe GA, Schilmiller AL (2002) Oxylipin metabolism in response to stress. Curr Opin Plant Biol 5:230–236

    Article  PubMed  CAS  Google Scholar 

  6. Chehab EW, Kaspi R, Savchenko T, Rowe H, Negre-Zakharov F, Kliebenstein D, Dehesh K (2008) Distinct roles of jasmonates and aldehydes in plant-defense responses. PLoS ONE 3:1–10 (e1904)

    Article  CAS  Google Scholar 

  7. Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297

    Article  PubMed  CAS  Google Scholar 

  8. Berger S, Weichert H, Porzel A, Wasternack C, Kühn H, Feussner I (2001) Enzymatic and non-enzymatic lipid peroxidation in leaf development. Biochim Biophys Acta 1533:266–276

    PubMed  CAS  Google Scholar 

  9. Hughes RK, West SI, Hornostaj AR, Lawson DM, Fairhurst SA, Sanchez RO, Hough P, Robinson BH, Casey R (2001) Probing a novel potato lipoxygenase with dual positional specificity reveals primary determinants of substrate binding and requirements for a surface hydrophobic loop and has implications for the role of lipoxygenases in tubers. Biochem J 353:345–355

    Article  PubMed  CAS  Google Scholar 

  10. Fukushige H, Wang C, Simpson TD, Gardner HW, Hildebrand DF (2005) Purification and identification of linoleic acid hydroperoxides generated by soybean seed lipoxygenases 2 and 3. J Agric Food Chem 53:5691–5694

    Article  PubMed  CAS  Google Scholar 

  11. Vick BA, Zimmerman DC (1983) The biosynthesis of jasmonic acid: a physiological role for plant lipoxygenase. Biochem Biophys Res Commun 111:470–477

    Article  PubMed  CAS  Google Scholar 

  12. Vellosillo T, Martínez M, López MA, Vicente J, Cascón T, Dolan L, Hamberg M, Castresana C (2007) Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade. Plant Cell 19:831–846

    Article  PubMed  CAS  Google Scholar 

  13. Browse J (2005) Jasmonate: an oxylipin signal with many roles in plants. Vitam Horm 72:431–456

    Article  PubMed  CAS  Google Scholar 

  14. Conconi A, Miquel M, Browse JA, Ryan CA (1996) Intracellular levels of free linolenic and linoleic acids increase in tomato leaves in response to wounding. Plant Physiol 111:797–803

    PubMed  CAS  Google Scholar 

  15. Bell E, Creelman RA, Mullet JE (1995) A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proc Natl Acad Sci USA 92:8675–8679

    Article  PubMed  CAS  Google Scholar 

  16. Halitschke R, Baldwin IT (2003) Antisense LOX expression increases herbivore performance by decreasing defense responses and inhibiting growth-related transcriptional reorganization in Nicotiana attenuata. Plant J 40:794–807

    Article  CAS  Google Scholar 

  17. Royo J, León J, Vancanneyt G, Albar JP, Rosahl S, Ortego F, Castanera P, Sánchez-Serrano JJ (1999) Antisense-mediated depletion of a potato lipoxygenase reduces wound induction of protein inhibitors and increases weight gain of insect pests. Proc Natl Acad Sci USA 96:1146–1151

    Article  PubMed  CAS  Google Scholar 

  18. Yamamoto H, Tani T (1986) Possible involvement of lipoxygenase in the mechanism of oat to Puccinia coronata avenae. J Phytopathol 116:329–337

    Article  CAS  Google Scholar 

  19. Ohta H, Shida K, Peng Y-L, Furusawa I, Shishiyama J, Aibara S, Morita Y (1991) A lipoxygenase pathway is activated in rice after infection with the rice blast fungus Magnaporthe grisea. Plant Physiol 97:94–98

    Article  PubMed  CAS  Google Scholar 

  20. Brodhagen M, Tsitsigiannis DI, Hornung E, Goebel C, Feussner I, Keller NP (2008) Reciprocal oxylipin-mediated cross-talk in the Aspergillus-seed pathosystem. Mol Microbiol 67:378–391

    PubMed  CAS  Google Scholar 

  21. Gao X, Shim W-B, Gobel C, Kunze S, Feussner I, Meeley R, Balint-Kurti P, Kolomiets M (2007) Disruption of a maize 9-lipoxygenase results in increased resistance to fungal pathogens and reduced levels of contamination with mycotoxin fumonisin. Mol Plant Microbe Interact 20:922–933

    Article  PubMed  CAS  Google Scholar 

  22. Rance I, Fournier J, Esquerre-Tugaye M-T (1998) The incompatible interaction between Phytophtora parasitica var. nicotianae race 0 and tobacco is suppressed in transgenic plants expressing antisense lipoxygenase sequences. Proc Natl Acad Sci USA 95:6554–6559

    Article  PubMed  CAS  Google Scholar 

  23. Vijayan P, Shockey J, Lévesque CA, Cook RJ, Browse J (1998) A role for jasmonate in pathogen defense of Arabidopsis. Proc Natl Acad Sci USA 95:7209–7214

    Article  PubMed  CAS  Google Scholar 

  24. Glazebrook J (2001) Genes controlling expression of defense responses in Arabidopsis—2001 status. Curr Opin Plant Biol 4:301–308

    Article  PubMed  CAS  Google Scholar 

  25. Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  PubMed  CAS  Google Scholar 

  26. Prost I, Dhondt S, Rothe G, Vicente J, Rodriguez MJ, Kift N, Carbonne F, Griffiths G, Esquerré-Tugayé MT, Rosahl S, Castresana C, Hamberg M, Fournier J (2005) Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol 139:1902–1913

    Article  PubMed  CAS  Google Scholar 

  27. Chini A, Fonseca S, Fernández G, Adie B, Chico JM, Lorenzo O, García-Casado G, López-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671

    Article  PubMed  CAS  Google Scholar 

  28. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661–665

    Article  PubMed  CAS  Google Scholar 

  29. Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  PubMed  CAS  Google Scholar 

  30. Göbel C, Feussner I, Hamberg M, Rosahl S (2002) Oxylipin profiling in pathogen-infected potato leaves. Biochim Biophys Acta 1584:55–64

    PubMed  Google Scholar 

  31. Melan MA, Dong X, Endara ME, Davis KR, Ausubel FM, Peterman TK (1993) An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiol 101:441–450

    Article  PubMed  CAS  Google Scholar 

  32. He Y, Fukushige H, Hildebrand DF, Gan S (2002) Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol 128:876–884

    Article  PubMed  CAS  Google Scholar 

  33. Melan MA, Enriquez ALD, Peterman TK (1994) The LOX1 gene of Arabidopsis is temporally and spatially regulated in germinating seedlings. Plant Physiol 105:385–393

    PubMed  CAS  Google Scholar 

  34. Peltier JB, Ytterberg AJ, Sun Q, van Wijk KJ (2004) New functions of the thylakoid membrane proteome of Arabidopsis thaliana revealed by a simple, fast and versatile fractionation strategy. J Biol Chem 279:49367–49383

    Article  PubMed  CAS  Google Scholar 

  35. Bell E, Mullet JE (1993) Characterization of an Arabidopsis lipoxygenase gene responsive to methyl jasmonate and wounding. Plant Physiol 103:1133–1137

    Article  PubMed  CAS  Google Scholar 

  36. Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2005) Volatile C6-aldehydes and allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana. Plant Cell Physiol 46:1093–1102

    Article  PubMed  CAS  Google Scholar 

  37. Chung HS, Koo AJK, Gao X, Jayanty S, Thines B, Jones AD, Howe GA (2008) Regulation and function of Arabidopsis JASMONATE ZIM-domain genes in response to wounding and herbivory. Plant Physiol 146:952–964

    Article  PubMed  CAS  Google Scholar 

  38. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  39. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  40. Hamberg M (1998) Stereochemistry of oxygenation of linoleic acid catalyzed by prostaglandin-endoperoxide H synthase-2. Arch Biochem Biophys 349:376–380

    Article  PubMed  CAS  Google Scholar 

  41. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  42. Felsenstein J (1989) PHYLIP-phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  43. Farmer EE, Almeras E, Krishnamurthy V (2003) Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol 6:372–378

    Article  PubMed  CAS  Google Scholar 

  44. Weiler EW, Laudert D, Stelmach BA, Hennig P, Biesgen C, Kubigsteltig I (1999) Octadecanoid and hexadecanoid signalling in plant defence. Novartis Found Symp 223:191–204

    Article  PubMed  CAS  Google Scholar 

  45. Shibata D, Axelrod B (1995) Plant lipoxygenases. J Lipid Mediat Cell Signal 12:213–228

    Article  PubMed  CAS  Google Scholar 

  46. Fritsche K, Hornung E, Hause B, Stenzel I, Wasternack C, Feussner I (2000) Isolation and characterization of lipoxygenase isozymes, Proceedings 11th international conference on arabidopsis research, University of Wisconsin, Madison, USA

  47. Hornung E, Walther M, Kühn H, Feussner I (1999) Conversion of cucumber linoleate 13-lipoxygenase to a 9-lipoxygenating species by site-directed mutagenesis. Proc Natl Acad Sci USA 96:4192–4197

    Article  PubMed  CAS  Google Scholar 

  48. Farmaki T, Sanmartín M, Jiménez P, Paneque M, Sanz C, Vancanneyt G, León J, Sánchez-Serrano JJ (2007) Differential distribution of the lipoxygenase pathway enzymes within potato chloroplasts. J Exp Botany 58:555–568

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The expert technical assistance by Mrs. G. Hamberg and Mr. T. Cascón is gratefully acknowledged. The authors would like to thank the Arabidopsis Biological Resource Center at Ohio State University for the kind provision of materials. This work was supported by grants from the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (project number 2001-2553), grant QLK5-CT-2001-02445 (NODO) from the European Union, and by grant BIO2006-08581 to Carmen Castresana from the Ministry of Education and Science (Spain). Gerard Bannenberg is a Ramón y Cajal fellow supported by the Spanish Ministry of Science and Innovation, and the Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Spain. Marta Martínez was supported by grant BIO2006-08581 to Carmen Castresana from the Ministry of Education and Science (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Castresana.

Additional information

Gerard Bannenberg, Marta Martínez shared first authors.

About this article

Cite this article

Bannenberg, G., Martínez, M., Hamberg, M. et al. Diversity of the Enzymatic Activity in the Lipoxygenase Gene Family of Arabidopsis thaliana . Lipids 44, 85–95 (2009). https://doi.org/10.1007/s11745-008-3245-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-008-3245-7

Keywords

Navigation