Skip to main content
Log in

Investigation of Substrate Binding and Product Stereochemistry Issues in Two Linoleate 9-Lipoxygenases

  • Original Article
  • Published:
Lipids

Abstract

Herein we characterize the Arabidopsis thaliana AtLOX1 and tomato (Solanum lycopersicum) LOXA proteins as linoleate 9S-lipoxygenases (9-LOX), and use the enzymes to test a model that predicts a relationship between substrate binding orientation and product stereochemistry. The cDNAs were heterologously expressed in E. coli and the proteins partially purified by nickel affinity chromatography using a N-terminal (His)6-tag. Both enzymes oxygenated linoleic acid almost exclusively to the 9S-hydroperoxide with turnover numbers of 300–400/s. AtLOX1 showed a broad range of activity over the range pH 5–9 (optimal at pH 6); tomato LOXA also showed optimal activity around pH 5–7 dropping off more sharply at pH 9. Site-directed mutagenesis of a conserved active site Ala (Ala562 in AtLOX1, Ala 564 in tomato LOXA, and typically conserved as Ala in S-LOX and Gly in R-LOX), revealed that substitution with Gly led to the production of a mixture of 9S- and 13R-hydroperoxyoctadecadienoic acids from linoleic acid. To follow up on earlier reports of 9-LOX metabolism of anandamide (van Zadelhoff et al. Biochem. Biophys. Res. Commun. 248:33–38, 1998), we also tested this substrate with the mutants, which produced predictable shifts in product profile, including a shift from the prominent 11S-hydroperoxy derivative of wild-type to include the 15R-hydroperoxide. These results conform to a model that predicts a head-first substrate binding orientation for 9S-LOX. We also found that linoleoyl-phosphatidylcholine is not a 9S-LOX substrate, which is consistent with this conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HPODE:

Hydroperoxyoctadecadienoic acid

HODE:

Hydroxyoctadecadienoic acid

HPETE:

Hydroperoxyeicosatetraenoic acid

HETE:

Hydroxyeicosatetraenoic acid

HPANA:

Hydroperoxyanandamide

HANA:

Hydroxyanandamide

HPLC:

High pressure liquid chromatography

LOX:

Lipoxygenase(s)

UV:

Ultraviolet

CPM:

Counts per minute

WT:

Wild-type

References

  1. Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297

    Article  PubMed  CAS  Google Scholar 

  2. Andreou A, Hornung E, Rosahl S, Feussner I (2008) On the substrate binding of a 9-LOX from potato. Lipids (submitted)

  3. Schneider C, Pratt DA, Porter NA, Brash AR (2007) Control of oxygenation in lipoxygenase and cyclooxygenase catalysis. Chem Biol 14:473–488

    Article  PubMed  CAS  Google Scholar 

  4. Egmond MR, Vliegenthart JFG, Boldingh J (1972) Stereospecificity of the hydrogen abstraction at carbon atom n-8 in the oxygenation of linoleic acid by lipoxygenases from corn germs and soya beans. Biochem Biophys Res Commun 48:1055–1060

    Article  PubMed  CAS  Google Scholar 

  5. Brash AR, Ingram CD, Harris TM (1987) Analysis of a specific oxygenation reaction of soybean lipoxygenase-1 with fatty acids esterified in phospholipids. Biochemistry 26:5465–5471

    Article  PubMed  CAS  Google Scholar 

  6. van Zadelhoff G, Veldink GA, Vliegenthart JFG (1998) With anandamide as substrate plant 5-lipoxygenases behave like 11-lipoxygenases. Biochem Biophys Res Commun 248:33–38

    Article  PubMed  Google Scholar 

  7. Butovich IA, Reddy CC (2001) Enzyme-catalyzed and enzyme-triggered pathways in dioxygenation of 1-monolinoleoyl-rac-glycerol by potato tuber lipoxygenase. Biochim Biophys Acta 1546:379–398

    PubMed  CAS  Google Scholar 

  8. Coffa G, Imber AN, Maguire BC, Laxmikanthan G, Schneider C, Gaffney BJ, Brash AR (2005) On the relationships of substrate orientation, hydrogen abstraction and product stereochemistry in single and double dioxygenations by soybean lipoxygenase-1 and its Ala542Gly mutant. J Biol Chem 280:38756–38766

    Article  PubMed  CAS  Google Scholar 

  9. Coffa G, Brash AR (2004) A single active site residue directs oxygenation stereospecificity in lipoxygenases: stereocontrol is linked to the position of oxygenation. Proc Natl Acad Sci USA 101:15579–15584

    Article  PubMed  CAS  Google Scholar 

  10. Peers KF, Coxon DT (1983) Controlled synthesis of monohydroperoxides by α-tocopherol inhibited autoxidation of polyunsaturated lipids. Chem Phys Lipids 32:49–56

    Article  CAS  Google Scholar 

  11. Brash AR, Song W-C (1996) Detection, assay, and isolation of allene oxide synthase. Meth Enzymol 272:250–259

    Article  PubMed  CAS  Google Scholar 

  12. Melan MA, Dong X, Endara ME, Davis KR, Ausubel FM, Peterman TK (1993) An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiol 101:441–450

    Article  PubMed  CAS  Google Scholar 

  13. Ferrie BJ, Beaudoin N, Burkhart W, Bowsher CG, Rothstein SJ (1994) The cloning of two tomato lipoxygenase genes and their differential expression during fruit ripening. Plant Physiol 106:109–118

    Article  PubMed  CAS  Google Scholar 

  14. Boutaud O, Brash AR (1999) Purification and catalytic activities of the two domains of the allene oxide synthase-lipoxygenase fusion protein of the coral Plexaura homomalla. J Biol Chem 274:33764–33770

    Article  PubMed  CAS  Google Scholar 

  15. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    PubMed  CAS  Google Scholar 

  16. Schneider C, Boeglin WE, Brash AR (2000) Enantiomeric separation of hydroxy-eicosanoids by chiral column chromatography: effect of the alcohol modifier. Anal Biochem 287:186–189

    Article  PubMed  CAS  Google Scholar 

  17. Gardner HW (1989) Soybean lipoxygenase-1 enzymically forms both (9S)- and (13S)-hydroperoxides from linoleic acid by a pH-dependent mechanism. Biochim Biophys Acta 1001:274–281

    PubMed  CAS  Google Scholar 

  18. Ingram CD, Brash AR (1988) Characterization of HETEs and related hydroxy-dienes by UV spectroscopy. Lipids 23:340–344

    Article  PubMed  CAS  Google Scholar 

  19. Heydeck D, Wiesner R, Kühn H, Schewe T (1991) On the reaction of wheat lipoxygenase with arachidonic acid and its oxygenated derivatives. Biomed Biochim Acta 50:11–15

    PubMed  CAS  Google Scholar 

  20. Regdel D, Kühn H, Schewe T (1994) On the reaction specificity of the lipoxygenase from tomato fruits. Biochim Biophys Acta 1210:297–302

    PubMed  CAS  Google Scholar 

  21. Shimizu T, Rådmark O, Samuelsson B (1984) Enzyme with dual lipoxygenase activities catalyzes leukotriene A4 synthesis from arachidonic acid. Proc Natl Acad Sci USA 81:689–693

    Article  PubMed  CAS  Google Scholar 

  22. Chen X, Reddanna P, Reddy GR, Kidd R, Hildenbrandt G, Reddy CC (1998) Expression, purification, and characterization of a recombinant 5-lipoxygenase from potato tuber. Biochem Biophys Res Commun 243:438–443

    Article  PubMed  CAS  Google Scholar 

  23. Reddy GR, Reddanna P, Reddy CC, Curtis WR (1992) 11-Hydroperoxyeicosatetraenoic acid is the major dioxygenation product of lipoxygenase isolated from hairy root cultures of Solanum tuberosum. Biochem Biophys Res Commun 189:1349–1352

    Article  PubMed  CAS  Google Scholar 

  24. Zhang LY, Hamberg M (1996) Specificity of two lipoxygenases from rice: unusual regiospecificity of a lipoxygenase isoenzyme. Lipids 31:803–809

    Article  PubMed  CAS  Google Scholar 

  25. Schneider C, Yu Z, Boeglin WE, Zheng Y, Brash AR (2007) Enantiomeric separation of hydroxy and hydroperoxy eicosanoids by chiral column chromatography. Meth Enzymol 433:145–157

    Article  PubMed  CAS  Google Scholar 

  26. Eskola J, Laakso S (1983) Bile salt-dependent oxygenation of polyunsaturated phosphatidylcholines by soybean lipoxygenase-1. Biochim Biophys Acta 751:305–311

    CAS  Google Scholar 

  27. Schewe T, Halangk W, Hiebsch C, Rapoport SM (1975) A lipoxygenase in rabbit reticulocytes which attacks phospholipids and intact mitochondria. FEBS Lett 60:149–153

    Article  PubMed  CAS  Google Scholar 

  28. Jung G, Yang DC, Nakao A (1985) Oxygenation of phosphatidylcholine by human polymorphonuclear leukocyte 15-lipoxygenase. Biochem Biophys Res Commun 130:559–566

    Article  PubMed  CAS  Google Scholar 

  29. Murray JJ, Brash AR (1988) Rabbit reticulocyte lipoxygenase catalyzes specific 12(S) and 15(S) oxygenation of arachidonyl–phosphatidylcholine. Arch Biochem Biophys 265:514–523

    Article  PubMed  CAS  Google Scholar 

  30. Takahashi Y, Glasgow WC, Suzuki H, Taketani Y, Yamamoto S, Anton M, Kühn H, Brash AR (1993) Investigation of the oxygenation of phospholipids by the porcine leukocyte and human platelet arachidonate 12-lipoxygenases. Eur J Biochem 218:165–171

    Article  PubMed  CAS  Google Scholar 

  31. Matthew JA, Chan HW-S, Galliard T (1977) A simple method for the preparation of pure 9-d-hydroperoxide of linoleic acid and methyl linoleate based on the positional specificity of lipoxygenase in tomato fruit. Lipids 12:324–326

    Article  PubMed  CAS  Google Scholar 

  32. Melan MA, Enriquez A, Peterman TK (1994) The LOX1 gene of Arabidopsis is temporally and spatially regulated in germinating seedlings. Plant Physiol 105:385–393

    PubMed  CAS  Google Scholar 

  33. Howe GA, Schilmiller AL (2002) Oxylipin metabolism in response to stress. Curr Opin Plant Biol 5:230–236

    Article  PubMed  CAS  Google Scholar 

  34. Vellosillo T, Martínez M, López MA, Vicente J, Cascón T, Dolan L, Hamberg M, Castresana C (2007) Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade. Plant Cell 19:831–846

    Article  PubMed  CAS  Google Scholar 

  35. Coffa G, Schneider C, Brash AR (2005) A comprehensive model of positional and stereo control in lipoxygenases. Biochem Biophys Res Commun 338:87–92

    Article  PubMed  CAS  Google Scholar 

  36. Bell E, Mullet JE (1993) Characterization of an Arabidopsis lipoxygenase gene responsive to methyl jasmonate and wounding. Plant Physiol 103:1133–1137

    Article  PubMed  CAS  Google Scholar 

  37. Heitz T, Bergey DR, Ryan CA (1997) A gene encoding a chloroplast-targeted lipoxygenase in tomato leaves is transiently induced by wounding, systemin, and methyl jasmonate. Plant Physiol 114:1085–1093

    Article  PubMed  CAS  Google Scholar 

  38. Chen G, Hackett R, Walker D, Taylor A, Lin Z, Grierson D (2004) Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds. Plant Physiol 136:2641–2651

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kaye Peterman (Wellesley College) for kindly proving the AtLOX1 cDNA. This work was supported by NIH grants GM-53638 and GM-074888 (to ARB) and by the US Department of Energy Grant DE-FG02-91ER20021 (to GAH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan R. Brash.

About this article

Cite this article

Boeglin, W.E., Itoh, A., Zheng, Y. et al. Investigation of Substrate Binding and Product Stereochemistry Issues in Two Linoleate 9-Lipoxygenases. Lipids 43, 979–987 (2008). https://doi.org/10.1007/s11745-008-3230-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-008-3230-1

Keywords

Navigation