Skip to main content
Log in

Direct Microwave Transesterification of Fingertip Prick Blood Samples for Fatty Acid Determinations

  • Methods
  • Published:
Lipids

Abstract

Omega-3 polyunsaturated fatty acid (PUFA) dietary intakes and tissue levels are positively associated with various health benefits. The development of cost efficient, high throughput methodologies would enable research in large clinical and population studies, and clinical fatty acid profiling. Microwave heating for the transesterification of blood fatty acids was examined. Samples were collected by venous puncture and fingertip prick onto chromatography paper. Aliquots of serum, plasma, erythrocytes and whole blood were prepared from venous blood. Boron trifluoride in methanol was used for transesterification but sample preparation and heating varied. Fatty acid determinations and markers of omega-3 fatty acid status including the sum of eicosapentaenoic acid and docosahexaenoic acid, the ratio of total n-3 PUFA to n-6 PUFA, and the percentage of n-3 highly unsaturated fatty acids (HUFA, ≥20 carbons and ≥3 carbon–carbon double bonds) in total HUFA were compared. Quantitative determinations indicate that microwave transesterification results in significantly lower estimates of monounsaturates and polyunsaturates, possibly through incomplete transesterification of triacylglycerols. However, qualitative estimates of omega-3 fatty acid status were relatively similar. Fingertip prick blood collection combined with direct transesterification by microwave may be a very rapid method to estimate omega-3 fatty acid status for selected applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BF3/MeOH:

Boron trifluoride in methanol

BHT:

Butylated hydroxytoluene

DHA:

Docosahexaenoic acid (22:6n-3)

DMA:

Dimethyl acetal

EDTA:

Ethylene diaminetetraacetic acid

EPA:

Eicosapentaenoic acid (20:5n-3)

FAME:

Fatty acid methyl ester

HUFA:

Highly unsaturated fatty acids

PUFA:

Polyunsaturated fatty acid

TLC:

Thin layer chromatography

17:0 PC:

1,2-Diheptadecanoyl-sn–glycero-3-phosphocholine

17:0 TG:

Triheptadecanoin

References

  1. Schmidt EB, Skou HA, Christensen JH, Dyerberg J (2000) Public Health Nutr 3:91–98

    PubMed  CAS  Google Scholar 

  2. Albert CM, Hennekens CH, O’Donnell CJ, Ajani UA, Carey VJ, Willett WC, Ruskin JN, Manson JE (1998) JAMA 279:23–28

    Article  PubMed  CAS  Google Scholar 

  3. Albert CM, Campos H, Stampfer MJ, Ridker PM, Manson JE, Willett WC, Ma J (2002) N Engl J Med 346:1113–1118

    Article  PubMed  CAS  Google Scholar 

  4. Connor WE (2000) Am J Clin Nutr 71:171S–175S

    PubMed  CAS  Google Scholar 

  5. GISSI-Prevenzione Investigators (1999) Lancet 354:447–455

    Article  Google Scholar 

  6. Kang JX, Leaf A (1996) Circulation 94:1774–1780

    PubMed  CAS  Google Scholar 

  7. Von Schacky C, Fischer S, Weber PC (1985) J Clin Invest 76:1626–1631

    Article  Google Scholar 

  8. Harris WS, Rothrock DW, Fanning A, Inkeles SB, Goodnight SH Jr, Illingworth DR, Connor WE (1990) Am J Clin Nutr 51:399–406

    PubMed  CAS  Google Scholar 

  9. Mozaffarian D, Geelen A, Brouwer IA, Geleijnse JM, Zock PL, Katan MB (2005) Circulation 112:1945–1952

    Article  PubMed  CAS  Google Scholar 

  10. Mozaffarian D, Rimm EB (2006) JAMA 296:1885–1899

    Article  PubMed  CAS  Google Scholar 

  11. Kobayashi M, Sasaki S, Kawabata T, Hasegawa K, Akabane M, Tsugane S (2001) Eur J Clin Nutr 55:643–650

    Article  PubMed  CAS  Google Scholar 

  12. Harris WS, Von Schacky C (2004) Prev Med 39:212–220

    Article  PubMed  CAS  Google Scholar 

  13. Stark KD, Salem N Jr (2005) Lipid Tech 17:181–185

    CAS  Google Scholar 

  14. Masood A, Stark KD, Salem N Jr (2005) J Lipid Res 46:2299–2305

    Article  PubMed  CAS  Google Scholar 

  15. Lepage G, Roy CC (1984) J Lipid Res 25:1391–1396

    PubMed  CAS  Google Scholar 

  16. Kang JX, Wang J (2005) BMC Biochem 6:5

    Article  PubMed  CAS  Google Scholar 

  17. Lepage G, Roy CC (1986) J Lipid Res 27:114–120

    PubMed  CAS  Google Scholar 

  18. Ohta A, Mayo MC, Kramer N, Lands WE (1990) Lipids 25:742–747

    Article  PubMed  CAS  Google Scholar 

  19. Inoue K, Suzuki Y, Yajima S, Shimozawa N, Orii T, Kondo N (1997) Clin Chem 43:2197–2198

    PubMed  CAS  Google Scholar 

  20. Marangoni F, Colombo C, Galli C (2004) Anal Biochem 326:267–272

    Article  PubMed  CAS  Google Scholar 

  21. Morrison WR, Smith LM (1964) J Lipid Res 4:600–608

    Google Scholar 

  22. Harris WS, Sands SA, Windsor SL, Ali HA, Stevens TL, Magalski A, Porter CB, Borkon AM (2004) Circulation 110:1645–1649

    Article  PubMed  CAS  Google Scholar 

  23. Banerjee P, Dawson G, Dasgupta A (1992) Biochim Biophys Acta 1110:65–74

    Article  PubMed  CAS  Google Scholar 

  24. Stark KD (2007) Lipids. doi:10.1007/s11745-007-3128-3

  25. Folch J, Lees M, Sloane Stanley GHS (1957) J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  26. Reed CF, Swisher SN, Marinetti GV, Eden EG (1960) J Lab Clin Med 56:281–289

    PubMed  CAS  Google Scholar 

  27. Bligh EG, Dyer WJ (1959) Can J Biochem Physiol 37:911–917

    PubMed  CAS  Google Scholar 

  28. Skipski VP, Good JJ, Barclay M, Reggio RB (1968) Biochim Biophys Acta 152:10–19

    PubMed  CAS  Google Scholar 

  29. Hara A, Taketomi T (1988) J Biochem (Tokyo) 104:1011–1015

    CAS  Google Scholar 

  30. Takemoto Y, Suzuki Y, Horibe R, Shimozawa N, Wanders RJ, Kondo N (2003) Brain Dev 25:481–487

    Article  PubMed  Google Scholar 

  31. Christie WW (1985) J Lipid Res 26:507–512

    PubMed  CAS  Google Scholar 

  32. Itonori S, Takahashi M, Kitamura T, Aoki K, Dulaney JT, Sugita M (2004) J Lipid Res 45:574–581

    Article  PubMed  CAS  Google Scholar 

  33. Lough AK (1964) Nature 202:795

    Article  PubMed  CAS  Google Scholar 

  34. Lands WE, Libelt B, Morris A, Kramer NC, Prewitt TE, Bowen P, Schmeisser D, Davidson MH, Burns JH (1992) Biochim Biophys Acta 1180:147–162

    PubMed  CAS  Google Scholar 

  35. Lands WE (2005) Ann N Y Acad Sci 1055:179–192

    Article  PubMed  CAS  Google Scholar 

  36. Dolecek TA (1992) Proc Soc Exp Biol Med 200:177–182

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Operating funds were provided by a start-up award from the University of Waterloo and infrastructure was purchased through a Canada Foundation of Innovation and the Ontario Research Fund matching grants. K.D.S. received partial salary support through a GENESIS Young Investigator Award and J.M.A held a NSERC Undergraduate Student Research Award for a portion of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken D. Stark.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 114 kb)

About this article

Cite this article

Armstrong, J.M., Metherel, A.H. & Stark, K.D. Direct Microwave Transesterification of Fingertip Prick Blood Samples for Fatty Acid Determinations. Lipids 43, 187–196 (2008). https://doi.org/10.1007/s11745-007-3141-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-007-3141-6

Keywords

Navigation