Skip to main content
Log in

Dose-response impact of various tocotrienols on serum lipid parameters in 5-week-old female chickens

  • Articles
  • Published:
Lipids

Abstract

The cholesterol-suppressive action of the tocotrienol-rich-fraction (TRF) of palm oil may be due to the effect of its constituent tocotrienols on β-hydroxy-β-methylglutaryl coenzyme A (HMG-CoA) reductase activity. The tocotrienols modulate HMG-CoA reductase activity via a post-transcriptional mechanism. As a consequence small doses (5–200 ppm) of TRF-supplemented diets fed to experimental animals lower serum cholesterol levels. These findings led us to evaluate the safety and efficacy of large supplements of TRF and its constituents. Diets supplemented with 50, 100, 250, 500, 1,000, or 2,000 ppm of TRF, α-tocopherol, α-tocotrienol, γ-tocotrienol, or δ-tocotrienol were fed to chickens for 4 wk. There were no differences between groups or within groups in weight gain, or in feed consumption at the termination of the feeding period. Supplemental TRF produced a dose-response (50–2,000 ppm) lowering of serum total and LDL cholesterol levels of 22% and 52% (P<0.05), respectively, compared with the control group. α-Tocopherol did not affect total or LDL-cholesterol levels. Supplemental α-tocotrienol within the 50–500 ppm range produced a dose-response lowering of total (17%) and LDL (33%) cholesterol levels. The more potent γ and δ isomers yielded dose-response (50–2,000 ppm) reductions of serum total (32%) and LDL (66%) cholesterol levels. HDL cholesterol levels were minimally impacted by the tocotrienols; as a result, the HDL/LDL cholesterol ratios were markedly improved (123–150%) by the supplements. Serum triglyceride levels were significantly lower in sera of pullets receiving the higher supplements. The safe dose of various tocotrienols for human consumption might be 200–1,000 mg/d based on this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α-TTP:

α-tocopherol transfer protein

CRP:

C-reactive protein

HMG-CoA:

β-hydroxy-β-methylglutaryl coenzyme A

TRF:

to-cotrienol-rich fraction

References

  1. Ross, R. (1999) Atherosclerosis: An Inflammatory Diseases, N. Engl. J. Med. 340, 115–126.

    Article  PubMed  CAS  Google Scholar 

  2. Ross, R. (1993) The Pathogenesis of Atherosclerosis: A Perspective for the 1990s. Nature 362, 801–809.

    Article  PubMed  CAS  Google Scholar 

  3. Mehta, J.L., Saldeen, T.G.P., and Rand, K. (1998) Interactive Role of Infection, Inflammation and Traditional Risk Factors in Atherosclerosis and Coronary Artery Disease, J. Am. Coll. Cardiol. 31, 1217–1225.

    Article  PubMed  CAS  Google Scholar 

  4. Libby, P., and Ridker, P.M. (1999) Novel Inflammatory Markers of Coronary Risk. Theory versus Practice, Circulation 100, 1148–1150.

    PubMed  CAS  Google Scholar 

  5. Libby, P., Hansson, G.K., and Pober, J.S. (1999) Atherogenesis and Inflammation, in Molecular Basis of Cardiovascular Disease, Chein, K.R., ed., pp. 349–366. W.B. Saunders Company, Philadelphia.

    Google Scholar 

  6. Ridker, P.M., Hennekens, C.H., Buring, J.E., and Rifai, N. (2000) C-Reactive Protein and Other Markers of Inflammation in the Prediction of Cardiovascular Disease in Women, N. Engl. J. Med. 342, 836–843.

    Article  PubMed  CAS  Google Scholar 

  7. Rohde, L.E.P., Hennekens, C.H., and Ridker, P.M. (1999) Survey of C-Reactive Protein and Cardiovascular Risk Factors in Apparently Healthy Men, Am. J. Cardiol. 84, 1018–1022.

    Article  PubMed  CAS  Google Scholar 

  8. Steinberg, D., and Lewis, A. (1997) Conner Memorial Lecture: Oxidative Modification of LDL and Atherogenesis, Circulation 95, 1062–1071.

    PubMed  CAS  Google Scholar 

  9. Lipid Research Clinics Program. (1984) The Lipid Research Clinics Coronary Primary Prevention Trial Results. Reduction in Incidence of Coronary Heart Disease, J Am. Med. Assoc. 251, 351–354.

    Article  Google Scholar 

  10. Berliner, J., Navab, M., Fogelman, A., Frank, J., Demer, L. and Edward, P. (1995) Atherosclerosis: Basic Mechanisms, Oxidation, Inflammation and Genetics, Circulation 91, 2488–2496.

    PubMed  CAS  Google Scholar 

  11. Kita, T., Nagano, Y., Yokode, M., Ishii, K., Kume, N., Ooshima, A., Yoshida, H., and Kawai, C. (1987) Probucol Prevents the Progression of Athersclerosis in Watanabe Heritable Hyperlipidemic Rabbit, an Animal Model for Familial Hypercholesterolemia, Proc. Natl. Acad. Sci. USA 84, 5928–5931.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang, S.H., Reddick, R.L., Avdievich, E., Surles, L.K., Jones, R.G., Reynolds, J.B., Quarfordt, S.H., and Maeda, N. (1997) Paradoxical Enhancement of Atherosclerosis by Probucol Treatment in Apolipoprotein E-Deficient Mice, J. Clin. Invest. 99, 23858–23866.

    Google Scholar 

  13. Brandes, R.P., Behra, A., Lebherz, C., Boger, R.H., Stefanie, M., Boger, B., and Mugge, A. (1999) Lovastatin Maintains Nitric Oxide but Not EDHF-Mediated Endothelium-Dependent Relaxation in the Hypercholesterolemic Rabbit Carotid Artery, Atherosclerosis 142, 97–104.

    Article  PubMed  CAS  Google Scholar 

  14. Nagano, Y., Nakamura, T., Matsuzawa, Y., Cho, M., Ueda, Y., and Kita, T. (1992) Probucol and Atherosclerosis in the Watanabe Heritable Hyperlipidemic Rabbit: Long-Term Antiatherogenic Effect and Effects on Established Plaques, Atherosclerosis 92, 131–140.

    Article  PubMed  CAS  Google Scholar 

  15. Sun, J., Giraud, D.W., Moxley, R.A., and Driskel, J.A. (1997) Beta-Carotene and Alpha-Tocopherol Inhibit the Development of Atherosclerotic Lesions in Hypercholesterolemic Rabbits, Int. J. Vitam. Res. 67, 155–163.

    CAS  Google Scholar 

  16. Nutrition Committee, American Heart Association (1988) Dietary Guideline: Healthy American Adults. Circulation 77, 721–724A.

    Google Scholar 

  17. Choudhary, N., Tan, L., and Truswell, A.S. (1995) Comparison of Palmolein and Olive Oil: Effects on Plasma Lipids and Vitamin E in Young Adults, Am. J. Clin. Nutr. 61, 1043–1051.

    Google Scholar 

  18. Elson, C.E. (1992) Tropical Oils: Nutrition and Scientific Issues. Crit. Rev. Food Sci. Nutr. 31, 79–102.

    Article  PubMed  CAS  Google Scholar 

  19. Qureshi, A.A., Qureshi, N., Hasler-Rapacz, J.O., Weber, F.E., Chaudhary, V., Crenshaw, T.D., Gabor, A., Ong, A.S.H., Chong, Y.H., Peterson, D., and Rapacz, J. (1991) Dietary Tocotrienols Reduce Concentrations of Plasma Cholesterol, Apolipoprotein B, Thromboxane B2, and Platelet Factor 4 in Pigs with Inherited Hyperlipidemias, Am. J. Clin. Nutr. 53, 1042S-1046S.

    PubMed  CAS  Google Scholar 

  20. Qureshi, A.A., Qureshi, N., Wright, J.J.K., Shen, S., Kramer, G., Gabor, A., Chong, Y.H., DeWitt, G., Ong, A.S.H., Peterson, D.M., and Bradlow, B.A. (1991) Lowering of Serum Cholesterol in Hypercholesterolemic Humans by Tocotrienols (Palmvitee). Am. J. Clin. Nutr. 53, 1021S-1026S.

    PubMed  CAS  Google Scholar 

  21. Qureshi, N., and Qureshi, A.A. (1993) Tocotrienols, Novel Hypocholesterolemic Agents with Antioxidant Properties. In: Vitamin E in Health and Disease (Packer L., Fuchs J. eds.) pp 247–267, Mercel Dekker, Inc., New York.

    Google Scholar 

  22. Parker, R.A., Pearce, B.C., Clark, R.W., Gordon, D.A., and Wright, J.J.K. (1993) Tocotrienols Regulate Cholesterol Production in Mammalian Cells by Post-Transcriptional Suppression of 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase, J. Biol. Chem. 268, 11230–11238.

    PubMed  CAS  Google Scholar 

  23. Brown, M.S., and Goldstein, J.L. (1980) Multivalent Feedback Control of HMG CoA Reductase, a Control Mechanism Coordinating Isoprenoid Synthesis and Cell Growth, J. Lipid Res. 21, 505–517.

    PubMed  CAS  Google Scholar 

  24. Ng, T.K.W., Ishak, R., Gapor, A., and Loh, C.K. (1990) Effects of Tocotrienol-Rich and Tocopherol-Rich Fractions from Palm Oil on Serum Lipids and Platelet Aggregation in the Rat, ASEAN Food J. 5, 165–169.

    CAS  Google Scholar 

  25. Pearce B.C., Parker, R.A., Deason, M.E., Qureshi, A.A., and Wright, J.J.K. (1992) Hypocholesterolemic Activity of Synthetic and Natural Tocotrienols, J. Med. Chem. 35, 3595–3606.

    Article  PubMed  CAS  Google Scholar 

  26. Wang, L., Newman, R.K., Newman, C.W., Jackson, L.L., and Hofer, P.J. (1993) Tocotrienol and Fatty Acid Composition of Barley Oil and Their Effects on Lipid Metabolism, Plant-Foods for Human Nutrition 43, 9–17.

    Article  PubMed  CAS  Google Scholar 

  27. Khor, H.T., and Chieng, D.Y. (1996) Effect of Dietary Supple-mentation of Tocotrienols and Tocopherols on Serum Lipids in the Hamster, Nutr. Res. 16, 1391–1401.

    Article  Google Scholar 

  28. Watkins, T.R., Lenz, P., Gapor, A., Struck, M., Tomeo, A., and Bierenbaum, M. (1997) γ-Tocotrienol as a Hypocholesterolemic and Antioxidant Agent in Rats Fed Atherogenic Diets, Lipids 28, 1113–1118.

    Article  Google Scholar 

  29. Qureshi, A.A., Mo, H., Packer, L., and Peterson, D.M. (2000) Isolation and Structural Identification of Novel Tocotrienols from Rice Bran with Hypocholesterolemic, Antioxidant and Antitumor Properties, J. Agric. Food Chem. 48, 3130–3140.

    Article  PubMed  CAS  Google Scholar 

  30. U.S. Food and Drug Administration. (1978) Tocopherols and Derivatives. Proposed Affirmation of GRAS Status for Certain Tocopherols and Removal of Certain Others from GRAS Status as Direct Human Food Ingredients, Fed. Regist, 43 (209, October 27), 50193–50198.

    Google Scholar 

  31. Qureshi, A.A., Peterson, D.M., Hasler, R.J.-O., and Rapacz J. (2001) Novel Tocotrienols of Rice Bran Suppress Cholesterogenesis in Hereditary Hypercholesterolemic Swine, J. Nutr. 131, 223–230.

    PubMed  CAS  Google Scholar 

  32. Qureshi A.A., Salser, W.A., Parmar, R., and Emeson, E.E. (2001) Novel Tocotrienols of Rice Bran Inhibit Atherosclerotic Lesions in C57BL/6 ApoE-deficient Mice, J. Nutr. 131, 2606–2618.

    PubMed  CAS  Google Scholar 

  33. Nakamura, H., Furukawa, F., Nishikawa, A., Miyauchi, M., Son, H.Y., Imazawa, T., and Hirose, M. (2001) Oral Toxicity of α-Tocotrienol Preparation in Rats, Food Chem. Toxicol. 39, 799–805.

    Article  PubMed  CAS  Google Scholar 

  34. Leveille, G.A., Romsos, D.R., Yeh, Y.Y., and O'Hea, E.K. (1975) Lipid Biosynthesis in the Chicks: A Consideration of Site of Synthesis, Influence of Diet and Possible Regulatory Mechanisms, Poultry Sci. 54, 1075–1093.

    CAS  Google Scholar 

  35. Shrago, E., Glennon, J.A., and Gordon, E.S. (1971) Comparative Aspects of Lipogenesis in Mammalian Tissues., Metabolism 20, 54–64.

    Article  PubMed  CAS  Google Scholar 

  36. Hermann, W.J.J.R., Ward, K., and Faucett, J. (1979) The Effect of Tocopherol on High Density Lipoprotein Cholesterol, a Clinical Observation, Am. J. Clin. Pathol. 72, 848–852.

    PubMed  Google Scholar 

  37. Oriani, G., Salvatori, G., Maiorano, G., Belisasrio, M.-A., Pastinese, A., Manchisi, A., and Pizzuti, G. (1997) Vitamin E Nutritional Status and Serum Lipid Pattern in Normal Weanling Rabbits, J. Anim. Sci. 75, 402–408.

    PubMed  CAS  Google Scholar 

  38. da Costa, V.A.V., and Vianna, L.M. (2005) Effect of Alpha-Tocopherol Supplementation on Blood Pressure and Lipidic Profile in Streptozotocin-Induced Diabetes Mellitus in Spontaneously Hypertensive Rats, Clin. Chim. Acta 351, 101–104.

    Article  CAS  Google Scholar 

  39. Qureshi, A.A., Pearce, B.C., Nor, R.M., Peterson, D.M., and Elson, C.E. (1996) Dietary α-Tocopherol Attenuates the Impact of γ-Tocotrienol on Hepatic 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Activity in Chickens, J. Nutr. 126, 389–394.

    PubMed  CAS  Google Scholar 

  40. Khor, H.T., and Ng, T.T. (1999) Effects of Administration of α-Tocopherol and Tocotrienols on Serum Lipid and Liver HMG-CoA Reductase Activity, Proc. PORIM Int. Palm Oil Congress (Nutr.), 177–186.

  41. Tan, D.T.S., Khor, H.T., Low, W.H.S., Ali, A., and Gapor, A. (1991) The Effect of Palm Oil Vitamin E Concentrate on the Serum and Lipoprotein Lipids in Humans, Am. J. Clin. Nutr. 53, 1027S-1030S.

    PubMed  CAS  Google Scholar 

  42. Qureshi, A.A., Bradlow, B.A., Salser, W.A., and Brace, L.D. (1997) Novel Tocotrienols of Rice Bran Modulate Cardiovascular Dise ase Risk Parameters of Hypercholesterolemic Humans, J. Nutr. Biochem. 8, 290–298.

    Article  CAS  Google Scholar 

  43. Qureshi, A.A., Sami, S.A., Salser, W.A., and Khan, F.A. (2001) Synergistic Effect of Tocotrienol-Rich Fraction (TRF25) of Rice Bran and Lovastatin on Lipid Parameters in Hupercholesterolemic Humans, J. Nutr. Biochem. 12, 318–329.

    Article  PubMed  CAS  Google Scholar 

  44. Qureshi A.A., Sami S.A., Salser, W.A., and Khan, F.A. (2002) Dose-Dependent Suppression of Serum Cholesterol by Tocotrienol-Rich Fraction (TRF25) of Rice Brain in Hypercholesterolemic Humans, Atherosclerosis 161, 199–207.

    Article  PubMed  CAS  Google Scholar 

  45. Wahlqvist, M.L., Krivokkuca-Bogetic, Z., Lo, C.S., Hage, B., Smith, R., and Lukito, W. (1992) Different Serum Responses of Tocopherols and Tocotrienols During Vitamin E Supplementation in Hypercholesterolemic Individuals Without Change in Coronary Risk Factors, Nutr. Res. 12, S181-S201.

    Article  Google Scholar 

  46. Kooyenga, D.K., Geller, M., Watkins, T.R., Gapor, A., Diakoumakis, E., and Bierrenbaum, M.L. (1997) Palm Oil Antioxidant Effects in Patients with Hyperlipidaemia and Carotid Stenosis: 2-Year Experience, Asia-Pacific J. Clin Nutr. 6, 72–75.

    Google Scholar 

  47. Mensink, R.P., Van-Houwelingen, A.C., Kromhout, D., and Hornstra, G. (1999) A Vitamin E Concentrate Rich in Tocotrienols Had No Effect on Serum Lipids, Lipoproteins or Platelet Function in Men with Mildly Elevated Serum Lipid Concentrations Am. J. Clin. Nutr. 69, 213–219.

    PubMed  CAS  Google Scholar 

  48. O'Byrne, D., Grundy, S., Packer, L., Devaraj, S., Baldenius, K., Hoppe, P.P., Kreamer, K., Jialal, I., and Traber, M.G. (2000) Studies of LDL Oxidation Following α-, γ-, or δ-Tocotrienyl Acetate Supplemention of Hypercholesterolemic Humans, Free Radical Biol. Med. 29, 834–845.

    Article  Google Scholar 

  49. Mustad, V.A., Smith, C.A., Ruey, P.P., Edens, N.K., and DeMickele, S.J. (2002) Supplementation with 3 Compositionally Different Tocotrienol Supplements Does Not Improve Cardiovascular Disease Risk Factors in Men and Women with Hypercholesterolemia, Am. J. Clin. Nutr. 76, 1237–1243.

    PubMed  CAS  Google Scholar 

  50. Raederstorff, D., Elste, V., Aebischer, C., and Weber, P. (2002) Effet of Either γ-Tocotrienol or α-Tocotrienol Mixture on the Plasma Lipid Profile in Hamsters, Ann. Nutr. Metabol. 46, 17–23.

    Article  CAS  Google Scholar 

  51. Hayes, K.C., Pronczuk, A., and Liang, J.S. (1993) Differences in the Plasma Transport and Tissue Concentration of Tocopherols and Tocotrienols: Observations in Humans and Hamster, Proc. Soc. Exp. Biol. Med. 202, 353–360.

    PubMed  CAS  Google Scholar 

  52. Traber, M.G., Coh., W., and Muller, D.P.R. (1993) Absorption, Transport, and Distribution to Tissues., in Vitamin E in Health and Disease, Packer, L., and Fuchs, J., eds., pp. 35–52, Marcel Dekker, Inc., New York.

    Google Scholar 

  53. Keyden, H.J., and Traber, M.G. (1993) Absorption, Lipoprotein Transport, and Regulation of Plasma Concentration of Vitamin E in Humans, J. Lipid Res. 34, 343–358.

    Google Scholar 

  54. Pearson, C.K., and Barnes, M.Mc. (1970) The Absorption and Distribution of the Naturally Occurring Tocochromanols in the Rat, Br. J. Nutr. 24, 581–587.

    Article  PubMed  CAS  Google Scholar 

  55. Ikeda, I., Imasato, Y., Sasaki, E., and Sugano, M. (1996) Lymphatic Transport of α-, γ-, and δ-Tocotrienols in Rats, Int. J. Vit. Nutr. Res. 66, 217–221.

    CAS  Google Scholar 

  56. Hosomi, A., Arita, M., Sato, Y., Kiyose, C., Ueda, T., Igarashi, O., Aria, H., Inoue, K. (1997) Affinity for α-Tocopherol Transfer Protein as a Determinant of the Biological Activities of Vitamin E Analogs, FEBS Lett. 405, 105–108.

    Article  Google Scholar 

  57. Yap, S.P., Yuen, K.H., and Wong, J.W. (2001) Pharmacokinetics and Bioavailability of α-, γ-, and δ-Tocotrienols Under Different Food Status, J. Pharm. Pharmacol. 53, 67–71.

    Article  PubMed  CAS  Google Scholar 

  58. Khor, H.T., Chirng, D.Y., and Ong, K.K. (1995) Tocotrienols Inhibit HMG-CoA Reductase Activity in the Guinea Pig, Nutr. Res. 15, 537–544.

    Article  CAS  Google Scholar 

  59. Qureshi, N., Hoffman, J., and Qureshi, A.A. (1993) Inhibition of LPS-Induced Tumor Necrosis Factor-α Synthesis and Hypocholesterolemic Effect of Novel Tocotrienols, PORIM Int. Palm Oil Congress September 20–25, N16.

  60. Hasselwander, O., Kramer, K., Hoppe, P.P., Oberfrank, U., Baldenius, K., Schroder, H., Kaufmann, W., Bahnemann, R., and Nowakowsky, B. (2002) Effects of Feeding Various Tocotrienol Sources on Plasma Lipids and Aortic Atherosclerotic Lesions in Cholesterol-Fed Rabbits, Food Res. Inter. 35, 245–251.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asaf A. Qureshi.

About this article

Cite this article

Yu, S.G., Thomas, A.M., Gapor, A. et al. Dose-response impact of various tocotrienols on serum lipid parameters in 5-week-old female chickens. Lipids 41, 453–461 (2006). https://doi.org/10.1007/s11745-006-5119-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-006-5119-1

Keywords

Navigation