Skip to main content
Log in

A high-saturated fat diet enriched with phytosterol and pectin affects the fatty acid profile in guinea pigs

  • Published:
Lipids

Abstract

This paper presents the results of a study whose aim was to test the effects of several doses of pectin and phytosterols on the body weight gain and the FA content in emale guinea pigs. The treatments resulted from supplementing with pectin and plant sterol a guinea pig diet (rich in saturated FA), following a 3×3 factorial design, with three levels of pectin (0,3.67 and 6.93%) and three levels of phytosterols (0, 1.37, and 2.45%). Seventy-two female Dunkin Hartley guinea pigs were randomly assigned to the treatment groups (8 animals/group), the duration of the treatment being 4 wk. Pectin dietary intake led to a significant increase in body weight (P<0.001), food consumption (P=0.025), and feed efficiency (P<0.001), but no influence of phytosterols on weight gain or food consumption was detected. We found a significant negative effect of the addition of phytosterols on lauric, myristic, and palmitic acid concents in feces, and a positive effect on their concentration in plasma and liver, but no significant effect on stearic acid content. Apparent FA absorption was assessed by calculating the ratio of FA in feces and diets that the absorption of the different FA could be compared, and the negative effect of phytosterol supplementation on these ratios, especially for lauric and myristic acids, was established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CHD:

coronary heart disease

MUFA:

monounsaturated

FASFA:

saturated FA

References

  1. Wood, D., De Backer, G., Faergeman, O., Graham, I., Mancia, G., and Pyorala, K. (1998) Prevention of Coronary Heart Disease in Clinical Practice, Recommendations of the Second Joint Task Force of European and Other Societies on Cornonary Prevention, Atherosclerosis 140, 199–270.

    Article  PubMed  CAS  Google Scholar 

  2. Krauss, R.M., Eckel, R.H., Howard, B., Appel, L.J., Daniels, S.R., Deckelbaum, R.J., Erdman, J.W., Jr., Kris-Etherton, P., Goldberg, I.J., Kotchen, T.A., et al. (2000) AHA Dietary Guidelines: Revision 2000: A Statement for Healthcare Professionals from the Nutrition Committee of the American Heart Association, Circulation 102, 2284–2299.

    PubMed  CAS  Google Scholar 

  3. Moghadasian, M.H., McManus, B.M., Pritchard, P.H., and Frohlich, J.J. (1997) “Tall Oil”-Derived Phytosterols Reduce Atherosclerosis in apoE-deficient Mice. Arterioscler. Thromb. Vasc. Biol. 17, 119–126.

    PubMed  CAS  Google Scholar 

  4. Hallikainen, M.A., Sarkkinen, E.S., Gylling, H., Erkkila, A.T., and Uusitupa, M.I. (2000) Comparison of the Effects of Plant Sterol Ester and Plant Stanol Ester-Enriched Margarines in Lowering Serum Cholesterol Concentrations in Hypercholes-terolaemic Subjects on a Low-Fat Diet, Eur. J. Clin. Nutr. 54, 715–725.

    Article  PubMed  CAS  Google Scholar 

  5. Miettinen, T.A., and Gylling, H. (2004) Plant Stanol and Sterol Esters in Prevention of Cardiovascular Disease. Ann. Med. 36, 126–134.

    Article  PubMed  CAS  Google Scholar 

  6. Katan, M.B., Grundy, S.M., Jones, P., Law, M., Miettinen, T.A., Paoletti, R., and Stresa Workshop Participants (2003) Efficacy and Safety of Plant Stanols and Sterols in the Management Of Blood Cholesterol Levels. Mayo Clin. Proc. 78, 965–978.

    PubMed  CAS  Google Scholar 

  7. Mensink, R.P., Ebbing, S., Lindhout, M., Plat, J., and van Heugten, M.M. (2002) Effects of Plant Stanol Esters Supplied in Low-Fat Yoghurt on Serum Lipids and Lipoproteins, Non-Cholesterol Sterols and Fat Soluble Antioxidant Concentrations. Atherosclerosis 160, 205–213.

    Article  PubMed  CAS  Google Scholar 

  8. Plat, J., Kerchoffs, D.A., and Mensink, R.P. (2000) Therapeutic Potential of Plant Sterols and Stanols, Curr. Opin. Lipidol. 11, 571–576.

    Article  PubMed  CAS  Google Scholar 

  9. Quílez, J., Rafecas, M., Brufau, G., García-Lorda, P., Megías, I., Bulló, M., Ruiz, J.A., and Salas-Salvadó, J. (2003) Bakery Products Enriched with Phytosterol Esters, α-Tocopherol and β-Carotene Decrease Plasma LDL-Cholesterol and Maintain Plasma β-Carotene Concentrations in Normocholesterolemic Men and Women. J. Nutr. 133, 3103–3109.

    PubMed  Google Scholar 

  10. Batta, A.K., Xu, G., Bollineni, J.S., Shefer, S., and Salen, G. (2005) Effect of High Plant Sterol-Enriched Diet and Cholesterol Absorption Inhibitor. SCH 58235, on Plant Sterol Absorption and Plasma Concentrations in Hypercholesterolemic Wild-type Kyoto Rats. Metabolism 54, 38–48.

    Article  PubMed  CAS  Google Scholar 

  11. Heinemann, T., Axtmann, G., and von Bergmann, K. (1993). Comparison of Intestinal Absorption of Cholesterol with Different Plant Sterols in Man, Eur. J. Clin. Invest. 23, 827–831

    Article  PubMed  CAS  Google Scholar 

  12. Ntanios, F.Y., and Jones, P.J. (1999) Dietary Sitostanol Reciprocally Influences Cholesterol Absorption and Biosynthesis in Hamsters and in Rabbits, Atherosclerosis 143, 341–351.

    Article  PubMed  CAS  Google Scholar 

  13. Child, P., and Kuksis, A. (1986) Investigation of the Role of Micellar Phospholipid in the Preferential Uptake of Cholesterol over Sitosterol by Dispersed Rat Jejunal Villus Cells, Biochem. Cell Biol. 64, 847–853.

    Article  PubMed  CAS  Google Scholar 

  14. Salen, G., Ahrens, E.H., Jr., and Grundy, S.M. (1970) Metabolism of β-Sitosterol in Man. J. Clin. Invest. 49, 952–967.

    PubMed  CAS  Google Scholar 

  15. Child, P., and Kuksis, A. (1983) Critical Role of Ring Structure in the Differential Uptake of Cholesterol and Plant Sterols by Membrane Preparations in vitro, J. Lipid Res. 24, 1196–1209.

    PubMed  CAS  Google Scholar 

  16. Ikeda, I., and Sugano, M. (1983) Some Aspects of Mechanism of Inhibition of Cholesterol Absorption by β-Sitosterol Biochim. Biophys. Acta 732, 651–658.

    Article  PubMed  CAS  Google Scholar 

  17. Miettinen, T.A., Puska, P., Gylling, H., Vanhanen, H., and Vartiainen, E. (1995) Reduction of Serum Cholesterol with Sitostanol-Ester Margarine in a Mildly Hypercholesterolemic Population. N. Engl. J. Med. 333, 1308–1312.

    Article  PubMed  CAS  Google Scholar 

  18. Jones, P.H. (1995) Trials of Lipid-Lowering Therapy in Primary Prevention of Coronary Heart Disease, Curr. Opin. Lipidol., 6, 365–368.

    Article  PubMed  CAS  Google Scholar 

  19. Hendriks, H.F., Weststrate, J.A., van Vliet, T., and Meijer, G.W. (1999) Spreads Enriched with Three Different Levels of Vegetable Oil Sterols and the Degree of Cholesterol Lowering in Normocholesterolaemic and Mildly Hypercholesterolaemic Subjects. Eur. J. Clin. Nutr. 53, 319–327.

    Article  PubMed  CAS  Google Scholar 

  20. Fernandez, M.L. (1995) Distinct Mechanisms of Plasma LDL Lowering by Dietary Fiber in the Guinea Pig: Specific Effects of Pectin, Guar Gum and Psyllium, J. Lipid Res. 36, 3294–3404

    Google Scholar 

  21. Shen, H., He, L., Price, R.L., and Fermandez, M.L. (1998) Dietary Soluble Fiber Lowers Plasma LDL Cholesterol Concentrations by altering Lipoprotein Metabolism in Female Guinea Pigs, J. Nutr. 128, 1434–1441.

    PubMed  CAS  Google Scholar 

  22. Arjmandi, B.H., Ahn, J., Nathani, S., and Reeves, R.D. (1992) Dietary Soluble Fiber and Cholesterol Affect Serum Cholesterol Concentration, Hepatic Portal Venous Short-Chain Fatty Acid Concentrations and Fecal Sterol Excretion in Rats. J. Nutr. 122 246–253.

    PubMed  CAS  Google Scholar 

  23. Anderson, J.W., Jones, A.E., and Riddell-Mason, S. (1994) Ten Different Dietary Fibers Have Significantly Different Effects on Serum and Liver Lipids of Cholesterol-Fed Rats. J. Nutr. 124, 78–83.

    PubMed  CAS  Google Scholar 

  24. Galibois, I., Desrosiers, T., Guevin, N., Lavigne, C., and Jacues, H. (1994) Effects of Dietary Fibre Mixtures on Glucose and Lipid Metabolism and on Mineral Absorption in the Rat. Ann. Nutr. Metab. 38, 203–211.

    Article  PubMed  CAS  Google Scholar 

  25. Hughes, R.H., and Wimmer, E.J. (1935) The Absorption of Soluble, Volatile Fatty Acids. J. Biol. Chem. 108, 141–144.

    CAS  Google Scholar 

  26. Carlier, H., and Besnard, A. (2000). Chyloportal Partition of Fatty Acids, in Fat Digestion and Absorption, (Christophe, A.B. and De Vriese, S. eds.), pp. 182–207, AOCS Press, Champaign.

    Google Scholar 

  27. Katan, M.B. (2000) Trans Fatty Acids and Plasma Lipoproteins. Nutr. Rev. 58, 188–191

    Article  PubMed  CAS  Google Scholar 

  28. Kris-Etherton, P.M., Harris, W.S., Appel, L.J., and American Heart Association, Nutrition Committee. (2002) Fish Consumption. Fish Oil, Omega-3 Fatty Acids, and Cardiovascular Disease. Circulation 106, 2747–2757.

    Article  PubMed  Google Scholar 

  29. Simopoulos, A.P. (2002) Omega-3 Fatty Acids in Inflammation and Autoimmune Diseases. J. Am. Coll. Nutr. 21, 495–505.

    PubMed  CAS  Google Scholar 

  30. Baer, D.J., Judd, J.T., Kris-Etherton, P.M., Zhao, G., and Emken, E.A. (2003) Stearic acid Absorption and Its Metabolizable Energy Value Are Minimally Lower Than Those of Other Fatty Acids in Healthy Men Fed Mixed Diets. J. Nutr. 133, 4129–4134.

    PubMed  CAS  Google Scholar 

  31. Bonanome, A., and Grundy, S.M. (1988) Effect of Dietary Stearic Acid on Plasma Cholesterol and Lipoprotein Levels, N. Engl. J. Med. 318, 1244–1248.

    Article  PubMed  CAS  Google Scholar 

  32. Dougherty, R.M., Allman, M.A., and Iacono, J.M. (1995) Effects of Diets Containing High or Low Amounts of Stearic Acid on Plasma Lipoprotein Fractions and Fecal Fatty Acid Excretion of Men. Am. J. Clin. Nutr. 61, 1120–1128.

    PubMed  CAS  Google Scholar 

  33. Apgar, J.L., Shively, C.A., and Tarka, S.M., Jr. (1987) Digestibility of Cocoa Butter and Corn Oil and Their Influence on Fatty Acid Distribution in Rats. J. Nutr. 117, 660–665

    PubMed  CAS  Google Scholar 

  34. Jones, A., Stolinski, M., Smith, R.D., Murphy, J.L., and Wootton, S.A. (1999) Effect of Fatty Acid Chain Length and Saturation on the Gastrointestinal Handling and Metabolic Disposal of Dietary Fatty Acids in Women, Br. J. Nutr. 81, 37–43.

    PubMed  CAS  Google Scholar 

  35. Emken, E.A. (1994) Metabolism of Dietary Stearic Acid Relative to Other Fatty Acids in Human Subjects, Am. J. Clin. Nutr. 60, 1023S–1028S.

    Google Scholar 

  36. Krause, B.R., and Newton, R.S. (1991) Animal Models for the Evaluation of Inhibitors of HMG-CoA Reductase, Adv. Lipid Res., 1, 57–72.

    Google Scholar 

  37. Lopez-Lopez, A., Castellote-Bargallo, A.I., and Lopez-Sabater, M.C. (2000) Comparison of Two Direct Methods for the Determination of Fatty Acids in Infant Faeces, Anal. Biochem. 282, 250–255.

    Article  PubMed  CAS  Google Scholar 

  38. Folch, J., Lees, M., and Sloane-Stanley, G. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  39. Wu, H., Dwyer, K.M., Fan, Z., Shircore, A., Fan, J., and Dwyer, J.H. (2003) Dietary Fiber and Progression of Atherosclerosis: The Los Angeles Atherosclerosis Study, Am. J. Clin. Nutr. 78, 1085–1091

    PubMed  CAS  Google Scholar 

  40. Pfeffer, P.E., Doner, L.W., Hoagland, P.D., and McDonald, G.G. (1981) Molecular Interactions with Dietary Fiber Components. Investigation of the Possible Association of Pectin and Bile Acids. J. Agric. Food Chem. 29, 455–461.

    Article  PubMed  CAS  Google Scholar 

  41. Sugano, M., Kamo, F., Ikeda, I., and Morioka, K. (1996) Lipidlowering Activity of Phytostanols in Rats. Atherosclerosis 24, 301–309.

    Article  Google Scholar 

  42. Ikeda, I., and Sugano, M. (1998) Inhibition of Cholesterol Absorption by Plant Sterols for Mass Intervention. Curr. Opin. Lipidol. 9, 527–531.

    Article  PubMed  CAS  Google Scholar 

  43. Clifton, P.M., Noakes, M., Sullivan, D., Erichsen, N., Ross, D., Annison, G., Fassoulakis, A., Cehun, M., and Nestel, P. (2004) Cholesterol-Lowering Effects on Plant Sterol Esters Differ in Milk, Yoghurt. Bread and Creal, Eur. J. Clin. Nutr. 58, 503–509.

    Article  PubMed  CAS  Google Scholar 

  44. Nestel, P., Cehun, M., Pomeroy, S., Abbey, M., and Weldon, G. (2001) Cholesterol-Lowering Effects of Plant Sterol Esters and Non-esterified Stanols in Margarine, Butter and Low-Fat Foods. Eur. J. Clin. Nutr. 55, 1084–1090

    Article  PubMed  CAS  Google Scholar 

  45. Roy, S., Vega-Lopez, S., and Fermandez, M.L. (2000) Gender and Hormonal Status Affect the Hypolipidemic Mechanisms of Dietary Soluble Fiber in Guinea Pigs. J. Nutr. 130, 600–607.

    PubMed  CAS  Google Scholar 

  46. Vergara-Jimenez, M., Conde, K., Erickson, S.K., and Fermandez, M.L. (1998) Hypolipidemic Mechanisms of Pectin and Psyllium in Guinea Pigs Fed High Fat-Sucrose Diets: Alterations on Hepatic Cholesterol Metabolism, J. Lipid Res. 39 1455–1465.

    PubMed  CAS  Google Scholar 

  47. Judd, P.A., and Truswell, A.S. (1985) The Hypocholesterolaemic Effects of Pectins in Rats. Br. J. Nutr. 53, 409–425.

    Article  PubMed  CAS  Google Scholar 

  48. Gallaher, D.D., hassel, C.A., Lee, K.J., and Gallaher, C.M. (1993) Viscosity and Fermentability As Attributes of Dietary Fiber Responsible for the Hypocholesterolaemic Effect in Hamsters, J. Nutr. 123, 244–252.

    PubMed  CAS  Google Scholar 

  49. Fukunaga, T., Sasaki, M., Araki, Y., Okamoto, T., Yasuoka, T., Tsujikawa, T., Fujiyama, Y., and Bamba, T. (2003) Effects of the Soluble Fibre Pectin on Intestinal Cell Proliferation, Fecal Short Chain Fatty Acid Production and Microbial Population. Digestion 67, 42–49.

    Article  PubMed  CAS  Google Scholar 

  50. Gorbach, S.L., and Goldin, B.R. (1987) Diet and the Excetion and Enterohepatic Cycling of Estrogens, Prev. Med. 16, 525–531.

    Article  PubMed  CAS  Google Scholar 

  51. Chapkin, R.S., Gao, J., Lee, D.Y., and Lupton, J.R. (1993) Dietary Fibers and Fats Alter Rat Colon Protein Kinase C Activity: Correlation to Cell Proliferation. J. Nutr. 123, 649–655.

    PubMed  CAS  Google Scholar 

  52. Hayes, K.C., Pronczuk, A., Wijendram, V., and Beer, M. (2002) Free Phytosterols Effectively Reduce Plasma and Liver Cholesterol in Gerbils Fed Cholesterol, J. Nutr. 132, 1983–1988.

    PubMed  CAS  Google Scholar 

  53. Swain, J.F., Rouse, I.L., Curley, C.B., and Sacks, F.M. (1990) Comparison of the Effects of Oat Bran and Low-Fiber Wheat on Serum Lipoprotein Levels and Blood Pressure, N. Engl. J. Med. 322, 147–152.

    Article  PubMed  CAS  Google Scholar 

  54. Hu, F.B., Manson, J.E., and Willett, W.C. (2001) Types of Dietary Fat and Risk of Coronary Heart Disease: A Critical Review, J. Am. Coll. Nutr. 20, 5–19.

    PubMed  Google Scholar 

  55. Ascherio, A., Rimm, E.B., Giovannucci, E.L., Spiegelman, D., Stampfer, M., and Willett, W.C. (1996) Dietary Fat and Risk of Coronary Heart Disease in Men: Cohort Follow Up Study in the United States, Br. Med. J. 313, 84–90.

    CAS  Google Scholar 

  56. Kritchevsky, D., and Tepper, S.A. (2005) Influence of a Fiber Mixture on Serum Lipids and Liver Lipids and on Fecal Fat Excretion in Rats. Nutr. Res. 25, 485–489.

    Article  CAS  Google Scholar 

  57. Moghadasian, M.H., McManus, B.M., Godin, D.V., Rodrigues, B., and Frochlich, J.J. (1999) Proatherogenic and Antiatherogenic Effects of Probucol and Phytosterols in Apolipoprotein E-Deficient Mice: Possible Mechanisms of Action, Circulation 99, 1733–1739.

    PubMed  CAS  Google Scholar 

  58. Ntanios, F.Y., Jones, P.J., and Frohlich, J.J. (1998) Dietary Sitostanol Plaque Formation but Not Lecithin Cholesterol Acyl Transferase Activity in Rabbits. Atherosclerosis 138, 101–110.

    Article  PubMed  CAS  Google Scholar 

  59. Volger, O.L., Mensink, R.P., Plat, J., Hornstra, G., havekes, L.M., and Princen, H.M. (2001) Dietary Vegetable Oil and Wood Derived Plant Stanol Esters Reduce Atherosclerotic Lesion Size and Severity in apoE*3-Leiden Transgenic Mice, Atherosclerosis 157, 375–381.

    Article  PubMed  CAS  Google Scholar 

  60. Ntanios, F.Y., van de Kooij, A.J., de Deckere, E.A., Duchateau, G.S., and Trautwein, E.A. (2003) Effects of Various Amounts of Dietary Plant Sterol Esters on Plasma and Hepatic Sterol Concentration and Aortic Foam Cell Formation of Cholesterol-Fed Hamsters. Atherosclerosis 169, 41–50.

    Article  PubMed  CAS  Google Scholar 

  61. Glueck, C.J., Speirs, J., Tracy, T., Streicher, P., Illig, E., and Vandegrift, J. (1991) Relationships of Serum Plant Sterols (phytosterols) and Cholesterol in 595 Hypercholesterolemic Subjects, and Familial Aggregation of Phytosterols, Cholesterol, and Premature Coronary Heart Disease in Hyperphytosterolemic Probands and Their First-Degree Relatives, Metabolism 40, 842–848.

    Article  PubMed  CAS  Google Scholar 

  62. Sutherland, W.H., Williams, M.J., Nye, E.R., Restieaux, N.J., de Jong, S.A., and Walker, H.L. (1998) Association of Plasma Noncholesterol Sterol Levels with Severity of Coronary Artery Disease. Nutr. Metab. Cardiovasc. Dis. 8, 386–391.

    Google Scholar 

  63. Rajaratnam, R.A., Gylling, H. and Miettinen, T.A. (2000) Independent Association of Serum Squalene and Noncholesterol Sterols with Coronary Artery Disease in Postmenopausal Women. J. Am. Coll. Cardiol. 35, 1185–1191.

    Article  PubMed  CAS  Google Scholar 

  64. Sudhop, T., Gottwald, B.M., and von Bergmann, K. (2002) Serum Plant Sterols as a Potential Risk Factor for Coranary Heart Disease. Metabolism 51, 1519–1521.

    Article  PubMed  CAS  Google Scholar 

  65. Assmann, G., Cullen, P., Erbey, J., Ramey, K.R., Kannenberg, F., and Schulte, H. (2006) Plasma Sitosterol Elevations Are Associated with an Increased Incidence of Coronary Events in Men: Results of a Nested Case-Control Analysis of the Prospective Cardiovascular Munster (PROCAM) Study. Nutr. Metab. Cardiovasc. Dis. 16, 13–21.

    Article  PubMed  CAS  Google Scholar 

  66. Temme, E.H., Mensink, R.P., and Hornstra, G. (1996) Comparison of the Effects of Diets Enriched in Lauric. Palmitic, or Oleic Acids on Serum Lipids and Lipoproteins in Healthy Women and Men, Am. J. Clin. Nutr. 63, 897–903.

    PubMed  CAS  Google Scholar 

  67. Denke, M.A., and Grundy, S.M. (1992) Comparison of Effects of Lauric Acid and Palmitic Acid on Plasma Lipids Lipoproteins, Am. J. Clin. Nutr. 56, 895–898.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Brufau, G., Canela, M.A. & Rafecas, M. A high-saturated fat diet enriched with phytosterol and pectin affects the fatty acid profile in guinea pigs. Lipids 41, 159–168 (2006). https://doi.org/10.1007/s11745-006-5084-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-006-5084-8

Keywords

Navigation