Skip to main content
Log in

Deoxycholic acid formation in gnotobiotic mice associated with human intestinal bacteria

  • Articles
  • Published:
Lipids

Abstract

In humans and animals, intestinal flora is indispensable for bile acid transformation. The goal of our study was to establish gnotobiotic mice with intestinal bacteria of human origin in order to examine the role of intestinal bacteria in the transformation of bile acids in vivo using the technique of gnotobiology. Eight strains of bile acid-deconjugating bacteria were isolated from ex-germ-free mice inoculated with a human fecal dilution of 10−6, and five strains of 7α-dehydroxylating bacteria were isolated from the intestine of limited human flora mice inoculated only with clostridia. The results of biochemical tests and 16S rDNA sequence analysis showed that seven out of eight bile acid-deconjugating strains belong to a bacteroides cluster (Bacteroides vulgatus, B. distasonis, and B. uniformis), and one strain had high similarity with Bilophila wadsworthia. All five strains that converted cholic acid to deoxycholic acid had greatest similarity with Clostridium hylemonae. A combination of 10 isolated strains converted taurocholic acid into deoxycholic acid both in vitro and in the mouse intestine. These results indicate that the predominant bacteria, mainly Bacteroides, in human feces comprise one of the main bacterial groups for the deconjugation of bile acids, and clostridia may play an important role in 7α-dehydroxylation of free-form primary bile acids in the intestine although these strains are not predominant. The gnotobiotic mouse with bacteria of human origin could be a useful model in studies of bile acid metabolism by human intestinal bacteria in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EG:

Eggerth-Gagnon

EGF:

Eggerth-Gagnon Fildes

GB:

gnotobiotic

GF:

germ-free

MPYG:

modified peptone-yeast-glucose

TS:

tripticase soy

References

  1. Morotomi, M., Guillem, J.G., LoGerfo, P., and Weinstein, I.B. (1990) Production of Diacylglycerol, an Activator of Protein Kinase C, by Human Intestinal Microflora, Cancer Res. 50, 3595–3599.

    PubMed  CAS  Google Scholar 

  2. Takano, S., Matsushima, M., Erturk, E., and Bryan, G.T. (1981) Early Induction of Rat Colonic Epithelial Ornithine and S-Adenosyl-L-Methionine Decarboxylase Activities by N-Methyl-N'-nitro-N- nitrosoguanidine or Bile Salts, Cancer Res. 41, 624–628.

    PubMed  CAS  Google Scholar 

  3. Narisawa, T., Magadia, N.E., Weisburger, J.H., and Wynder, E.L. (1974) Promoting Effect of Bile Acids on Colon Carcinogenesis After Intrarectal Instillation of N-Methyl-N'-nitro-N-nitrosoguanidine in Rats, J. Natl. Cancer Inst. 53, 1093–1097.

    PubMed  CAS  Google Scholar 

  4. Reddy, B.S., Simi, B., Patel, N., Aliaga, C., and Rao, C.V. (1996) Effect of Amount and Types of Dietary Fat on Intestinal Bacterial 7-Alpha-Dehydroxylase and Phosphatidylinositol-Specific Phospholipase C and Colonic Mucosal Diacylglycerol Kinase and PKC Activities During Stages of Colon Tumor Promotion. Cancer Res. 56, 2314–2320.

    PubMed  CAS  Google Scholar 

  5. Reddy, B.S., Watanabe, K., Weisburger, J.H., and Wynder, E.L. (1977) Promoting Effect of Bile Acids in Colon Carcinogenesis in Germ-Free and Conventional F344 Rats, Cancer Res. 37, 3238–3242.

    PubMed  CAS  Google Scholar 

  6. Mastromarino, A., Reddy, B.S., and Wynder, E.L. (1976) Metabolic Epidemiology of Colon Cancer: Enzymic Activity of Fecal Flora, Am. J. Clin. Nutr. 29, 1455–1460.

    PubMed  CAS  Google Scholar 

  7. Bayerdorffer, E., Mannes, G.A., Richter, W.O., Ochsenkuhn, T., Wiebecke, B., Kopcke, W., and Paumqartner, G. (1993) Increased Serum Deoxycholic Acid Levels in Men with Colorectal Adenomas, Gastroenterology 104, 145–151.

    PubMed  CAS  Google Scholar 

  8. Bayerdorffer, E., Mannes, G.A., Ochsenkuhn, T., Dirschedl, P., Wiebecke, B., and Paumqartner, G. (1995) Unconjugated Secondary Bile Acids in the Serum of Patients with Colorectal Adenomas, Gut 36, 268–273.

    PubMed  CAS  Google Scholar 

  9. Archer, R.H., Chong, R., and Maddox, I.S. (1982) Hydrolysis of Bile Acid Conjugates by Clostridium bifermentans, Eur. J. Appl. Microbiol. Biotechnol. 14, 41–45.

    Article  CAS  Google Scholar 

  10. Gilliland, S.E., and Speck, M.L. (1977) Deconjugation of Bile Acids by Intestinal Lactobacilli, Appl. Environ. Microbiol. 3, 15–18.

    Google Scholar 

  11. Masuda, N. (1981) Deconjugation of Bile Salts by Bacteroids and Clostridium, Microbiol. Immunol. 25, 1–11.

    PubMed  CAS  Google Scholar 

  12. Stellwag, E.J., and Hylemon, P.B. (1976) Purification and Characterization of Bile Salt Hydrolase from Bacteroides fragilis subsp. fragilis, Biochim. Biophys. Acta 452, 165–176.

    PubMed  CAS  Google Scholar 

  13. Bortolini, O., Medici, A., and Poli, S. (1997) Biotransformations on Steroid Nucleus of Bile Acids, Steroids 62, 564–577.

    Article  PubMed  CAS  Google Scholar 

  14. Aries, V., and Hill, M.J. (1970) Degradation of Steroids by Intestinal Bacteria. II. Enzymes Catalysing the Oxidereduction of the 3-Alpha-, 7-Alpha- and 12-Alpha-Hydroxyl Groups in Cholic Acid, and the Dehydroxylation of the 7-Hydroxyl Group, Biochim. Biophys. Acta 202, 535–543.

    PubMed  CAS  Google Scholar 

  15. Gustafsson, B.E., Midtvedt, T., and Norman, A. (1966) Isolated Fecal Microorganisms Capable of 7α-Dehydroxylating Bile Acids, J. Exp. Med. 123, 413–432.

    Article  PubMed  CAS  Google Scholar 

  16. Midtvedt, T. (1967) Properties of Anaerobic Gram-Positive Rods Capable of 7α-Dehydroxylating Bile Acids, Acta Pathol. Microbiol. Scand. 71, 147–160.

    Article  Google Scholar 

  17. Ferrari, A., Pacini, N., and Canzi, E. (1980) A Note on Bile Acids Transformations by Strains of Bifidobacterium, J. Appl. Bacteriol. 49, 193–197.

    PubMed  CAS  Google Scholar 

  18. Takahashi, T., and Morotomi, M. (1994) Absence of Cholic Acid 7-Alpha-Dehydroxylase Activity in the Strains of Lactobacillus and Bifidobacterium, J. Dairy Sci. 77, 3275–3286.

    Article  PubMed  CAS  Google Scholar 

  19. Hirano, S., and Masuda, N. (1981) Transformation of Bile Acids by Eubacterium lentum, Appl. Environ. Microbiol. 42, 912–915.

    PubMed  CAS  Google Scholar 

  20. Stellwag, E.J., and Hylemon, P.B. (1978) Characterization of 7α-Dehydroxylase in Clostridium leptum, Am. J. Clin. Nutr., 31, 243–247.

    CAS  Google Scholar 

  21. Dickinson, A.B., Gustafsson, B.E., and Norman, A. (1971) Determination of Bile Acid Conversion Potencies of Intestinal Bacteria by Screening in vitro and Subsequent Establishment in Germfree Rats, Acta Pathol. Microbiol. Scand. B Microbiol. Immunol. 79, 691–698.

    PubMed  CAS  Google Scholar 

  22. Archer, R.H., Maddox, I.S., and Chong, R. (1981) 7α-Dehydroxylation of Cholic Acid by Clostridium bifermentans, Eur. J. Appl. Microbiol. Biotechnol. 12, 46–52.

    Article  CAS  Google Scholar 

  23. Ferrari, A., and Beretta, L. (1977) Activity on Bile Acids of a Clostridium bifermentans Cell-Free Extract, FEBS Lett. 75, 163–165.

    Article  PubMed  CAS  Google Scholar 

  24. Hayakawa, S., and Hattori, T. (1970) 7α-Dehydroxylation of Cholic Acid by Clostridium bifermentans Strain ATCC 9714 and Clostridium sordellii Strain NCIB 6929, FEBS Lett. 6, 131–133.

    Article  PubMed  CAS  Google Scholar 

  25. Hylemon, P.B., Cacciapuoti, A.F., White, B.A., Whitehead, T.R., and Fricke, R.J. (1980) 7-Alpha-Dehydroxylation of Cholic Acid by Cell Extracts of Eubacterium Species V.P.I. 12708, Am. J. Clin. Nutr. 33, 2507–2510.

    PubMed  CAS  Google Scholar 

  26. Stellwag, E.J., and Hylemon, P.B. (1979) 7-Alpha-Dehydroxylation of Cholic Acid and Chenodeoxycholic Acid by Clostridium leptum, J. Lipid Res. 20, 325–333.

    PubMed  CAS  Google Scholar 

  27. Hirano, S., Nakama, R., Tamaki, M., Masuda, N., and Oda, H. (1981) Isolation and Characterization of Thirteen Intestinal Microorganisms Capable of 7-Alpha-Dehydroxylating Bile Acids, Appl. Environ. Microbiol. 41, 737–745.

    PubMed  CAS  Google Scholar 

  28. Takamine, F., and Imamura, T. (1995) Isolation and Characterization ofBBile Acid 7-Dehydroxylating Bacteria from Human Feces, Microbiol. Immunol. 39, 11–18.

    PubMed  CAS  Google Scholar 

  29. Narushima, S., Itoh, K., Kuruma, K., and Uchida, K. (1999) Cecal Bile Acid Compositions in Gnotobiotic Mice Associated with Human Intestinal Bacteria with the Ability to Transform Bile Acids in vitro, Microbiol. Ecol. Health Dis. 11, 55–60.

    Article  Google Scholar 

  30. Narushima, S., Itoh, K., Takamine, F., and Uchida, K. (1999) Absence of Cecal Secondary Bile Acids in Gnotobiotic Mice Associated with Two Human Intestinal Bacteria with the Ability to Dehydroxylate Bile Acids in vitro, Microbiol. Immunol. 43, 893–397.

    PubMed  CAS  Google Scholar 

  31. narushima, S., Itoh, K., Kuruma, K., and Uchida, K. (2000) Composition of Cecal Bile Acids in Ex-Germfree Mice Inoculated with Human Intestinal Bacteria, Lipids 35, 639–644.

    Article  PubMed  CAS  Google Scholar 

  32. Itoh, K., Ozaki, A., Yamamoto, T., and Mitsuoka, T. (1978) An Autoclavable Stainless Steel Isolator for Small Scale Gnotobiotic Experiments, Exp. Anim. 27, 13–16 (in Japanese).

    CAS  Google Scholar 

  33. Mitsuoka, T., Sega, T., and Yamamoto, S. (1965) Eine Verbesserte Methodik der Qualitativen und Quantativen Analyse der Darmflora von Menschen und Tieren, Zeutralbl. Bacteriol. Parasitenkd. Infektionskr. Hyg. I Orig. A 195, 455–469.

    CAS  Google Scholar 

  34. Itoh, K., and Mitsuoka, T. (1980) Production of Gnotobiotic Mice with Normal Physiological Functions. I. Selection of Useful Bacteria from Feces of Conventional Mice, Z. Versuchstierkd. 22, 173–178.

    PubMed  CAS  Google Scholar 

  35. Tserng, K.Y., and Klein, P.D. (1979) Bile Acid Sulfates: II. Synthesis of 3-Monosulfates of Bile Acids and Their Conjugates, Lipids 13, 479–486.

    Article  Google Scholar 

  36. Goto, J., Hasegawa, M., Kato, H., and Nambara, T. (1978) A New Method for Simultaneous Determination of Bile Acids in Human Bile Without Hydrolysis, Clin. Chim. Acta 87, 141–147.

    Article  PubMed  CAS  Google Scholar 

  37. Okuyama, S., Kokubun, N., Higashidate, S., Uemura, D., and Hirata, Y. (1979) A New Analytical Method of Individual Bile Acids Using High Performance Liquid Chromatography and Immobilized 3α-Hydroxysteroid Dehydrogenase in Column Form, Chem. Lett., 1443–1446.

  38. Kaneuchi, C., Watanabe, K., Terada, A., Benno, Y., and Mitsuoka, T. (1976) Taxonomic Study of Bacteroides clostridiiformis subsp. clostridiiformis (Burri and ankersmit) Holdeman and Moore and of Related Organisms: Proposal of Clostridium clostridiiformis (Burri and Ankersmit) comb. nov. and Clostridium symbiosum (Sieven) com. nov., Int. J. Syst. Bacteriol. 26, 195–204.

    Google Scholar 

  39. Holdeman, L., Cato, E., and Moore, W. (1977) Anaerobic Laboratory Manual, 4th. edn. Ahaerobic Laboratory, Blacksburg, Virginia.

    Google Scholar 

  40. Fildes, P. (1920) New Medium for the Growth of B. influenza, Br. J. Exp. Pathol. 1, 129–130.

    Google Scholar 

  41. Cato, E., George, W., and Finegold, S. (1986) Genus Clostridium Prazmowski 1880, 23AL» in Bergey's Manual of Systematic Bacteriology, P. Sneath, N. Mair, M. Sharepe, and J. Holt, eds., vol. 2. pp. 1141–1200, The Williams & Wiliins Co., Baltimore.

    Google Scholar 

  42. Kikuchi, E., Miyamoto, Y., Narushima, S., and Itoh, K. (2002) Design of Species-Specific Primers to Identify 13 Species of Clostridium Harbored in Human Intestinal Tracts, Microbiol. Immunol. 46, 353–358.

    PubMed  CAS  Google Scholar 

  43. Miyamoto, Y., and Itoh, K. (1999) Design of Cluster-Specific 16S rDNA Oligonucleotide Probes to Identify Bacteria of the Bacteroides Subgroup Harbored in Human Feces, FEMS Microbiol. Lett. 177, 143–149.

    Article  PubMed  CAS  Google Scholar 

  44. Grossman, N., and Ron, E.Z. (1975) Membrane-Bound DNA from Escherichia coli: Extraction by Freeze-Thaw-Lysozyme, FEBS Lett. 54, 327–329.

    Article  PubMed  CAS  Google Scholar 

  45. Anzai, Y., Kudo, Y., and Oyaizu, H. (1997) The Phylogeny of the Genera Chryseomonas, Flavimonas, and Pseudomonas, Supports Synonymy of These Three Genera, Int. J. Syst. Bacteriol. 47, 249–251.

    Article  PubMed  CAS  Google Scholar 

  46. Saitou, N., and Nei, M. (1987) The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees, Mol. Biol. Evol. 4, 406–425.

    PubMed  CAS  Google Scholar 

  47. Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994) CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment Through Sequence Weighting, Position-Specific Gap Penalties and Weight matrix Choice, Nucleic Acids Res. 22, 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  48. Collins, M.D., Lawson, P.A., Willems, A., Cordoba, J.J., Fernandez-Garayzabal, J., Garcia, P., Cai, J., Hippe, H., and Farrow, J.A. (1994) The Phylogeny of the Genus Clostridium: Proposal of Five New Genera and Eleven New Species Combinations,. Int. J. Syst. Bacteroil. 44, 812–826.

    CAS  Google Scholar 

  49. Uchida, K., Satoh, T., Narushima, S., Itoh, K., Takase, H., Kuruma, K., Nakao, H., Yamaga, N., and Yamada, K. (1999) Transformation of Bile Acids and Sterols by Clostridia (Fusiform Bacteria) in Wistar Rats, Lipids 34, 269–273.

    Article  PubMed  CAS  Google Scholar 

  50. Batta, A.K., Salen, G., Arora, R., Shefer, S., Batta, M., and Person, A. (1990) Side Chain Conjugation Prevents Bacterial 7-Dehydroxylation of Bile Acids, J. Biol. Chem. 265, 10925–10928.

    PubMed  CAS  Google Scholar 

  51. Grill, J.P., Manginot-Durr, C., Schneider, F., and Ballongue, J. (1995) Bifidobacteria and Probiotic Effects: Action of Bifidobacterium Species on Conjugated Bile Salts, Curr. Microbiol. 31, 23–27.

    Article  PubMed  CAS  Google Scholar 

  52. Kitahara, M., Takamine, F., Imamura, T., and Benno, Y. (2001) Clostridium hiranonis sp. nov., a Human Intestinal Bacterium with Bile Acid 7-Alpha-Dehydroxylating Activity, Int. J. Syst. Evol. Microbiol. 51, 39–44.

    PubMed  CAS  Google Scholar 

  53. Doerner, K.C., Takamine, F., LaVoie, C.P., Mallonee, D.H., and Hylemon, P.B. (1997) Assessment of Fecal Bacteria with Bile Acid 7-Alpha-Dehydroxylating Activity for the Presence of Bailike Genes, Appl. Environ. Microbiol. 63, 1185–1188.

    PubMed  CAS  Google Scholar 

  54. Wells, J.E., and Hylemon, P.B. (2000) Identification and Characterization of a Bile Acid 7-Alpha-Dehydroxylation Operon in Clostridium sp. Strain TO-931, a Highly Active 7-Alpha-Dehydroxylating Strain Isolated from Human Feces, Appl. Environ. Microbiol. 66, 1107–1113.

    Article  PubMed  CAS  Google Scholar 

  55. Kitahara, M., Takamine, F., Imamura, T., and Benno, Y. (2000) Assignment of Eubacterium sp. VPI 12708 and Related Strains with High Bile Acid 7-Alpha-Dehydroxylating Activity to Clostridium scindens and Proposal of Clostridium hylemonae sp. nov., Isolated from Human Faeces, Int. J. Syst. Evol. Microbiol 50 Pt 3, 971–978.

    PubMed  CAS  Google Scholar 

  56. White, B.A., Lipsky, R.L., Fricke, R.J., and Hylemon, P.B. (1980) Bile Acid Induction Specificity of 7-Alpha-Dehydroxylase Activity in an Intestinal Eubacterium Species, Steroids 35, 103–109.

    Article  PubMed  CAS  Google Scholar 

  57. Ridlon, J.M., Kang, D.-J., and Hylemon, P.B. (2006) Bile Salt Biotransformation by Human Intestinal Bacteria, J. Lipid Red. 47, 241–259.

    Article  CAS  Google Scholar 

  58. Kitahara, M., Sakamoto, M., and Benno, Y. (2001) PCR Detection Method of Clostridium scindens and C. hiranonis in Human Fecal Samples, Microbiol. Immunol. 45, 263–266.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kikuji Itoh.

About this article

Cite this article

Narushima, S., Itoh, K., Miyamoto, Y. et al. Deoxycholic acid formation in gnotobiotic mice associated with human intestinal bacteria. Lipids 41, 835–843 (2006). https://doi.org/10.1007/s11745-006-5038-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-006-5038-1

Keywords

Navigation