Skip to main content
Log in

Antioxidant effects of black rice extract through the induction of superoxide dismutase and catalase activities

  • Published:
Lipids

Abstract

Our ex vivo study revealed that BRE had significantly stronger ability to inhibit LDL oxidation than white rice extract (WRE). The purpose of this study was to investigate whether black rice extract (BRE) supplementation might ameliorate oxidative stress and enhance antioxidant enzyme activities in HepG2 cells and in C57BL/6 mice. In the cellular study, superoxide anions (O2.−) and reactive oxygen species (ROS) in the BRE group were significantly suppressed. The BRE group also showed significant increases in superoxide dismutase (SOD) and catalase (CAT) activities by 161.6% and 73.4%, respectively. The major components responsible for the free-radical-scavenging and antioxidative properties might be cyanidin−3-O-glucoside chloride and peonidin-3-O-glucuside chloride. In the animal study, male C57BL/6 mice were divided into three groups (control, BRE, and WRE). Plasma HDL-cholesterol was significantly higher, and thiobarbituric, acid-reactive substances were significantly lower in the BRE group, whereas plasma levels of total cholesterol and triglyceride were not affected by BRE supplementation. Increased hepatic SOD and CAT activities were observed in BRE-treated mice as compared to the control mice. However, no changes were detected for the protein expression of antioxidant enzymes by Western blot analysis. Our data suggest that antioxidative effects exerted by BRE are mediated through decreases in free-radical generation as well as increases in SOD and CAT activities both in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BRE:

black rice extract

C3G:

cyanidin−3-O-glucoside chloride

CAT:

catalase

CD:

conjugated diene

GPx:

glutathione peroxidase

HDL-C:

high density lipoprotein-cholesterol

LDL-C:

low density lipoprotein-cholesterol

MDA:

malondialdehyde

P3G:

peonidin-3-O-glucuside chloride

ROS:

reactive oxygen species

SOD:

superoxide dismutase

TBARS:

thiobarbituric acid-reactive substances

TG:

triglycerides

TC:

total cholesterol

WRE:

white rice extract

References

  1. Clampett, W.S., Nguyen, V.N., and Tran, D.V. (2002) The development and use of integrated crop management for rice production, pp. 23–26. Bangkok, Thailand: International Rice Commission, FAO.

    Google Scholar 

  2. Simmons, D. and Williams, R. (1997) Dietary practices among Europeans and different South Asian groups in Coventry, Brit. J. Nutr., 78, 5–14.

    Article  PubMed  CAS  Google Scholar 

  3. Ling, W.H., Wang, L.L., and Ma, J. (2002) Supplementation of the black rice outer layer fraction to rabbits decreases atherosclerotic plaque formation and increases antioxidant status, J. Nutr., 132, 20–26.

    PubMed  CAS  Google Scholar 

  4. Xia, M., Ling, W.H., Ma, J., Kitts, D.D., and Zawistowski, J. (2003) Supplementation of diets with the black rice pigment fraction attenuates atherosclerotic plaque formation in apolipoprotein E deficient mice, J. Nutr., 133, 744–751.

    PubMed  CAS  Google Scholar 

  5. Clifford, M.N. (2000) Anthocyanins: Nature, occurrence and dietary burden, J. Sci. Food Agric., 80, 1063–1072.

    Article  CAS  Google Scholar 

  6. Mazza, G., and Miniati, E. (1993) Anthocyanins in fruits, vegetables, and grains, pp. 362, CRC Press: Boca Raton, FL.

    Google Scholar 

  7. Wu, X., Beecher, G.R., Holden, J.M., Haytowitz, D.B., Gebhardt, S.E., and Prior, R.L. (2006) Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption, J. Agric. Food Chem., 54, 4069–4075.

    Article  PubMed  CAS  Google Scholar 

  8. Hu, C., Zawistowski, J., Ling, W., and Kitts, D.D. (2003) Black rice (Oryza sativa L. indica) pigmented fraction suppresses both reactive oxygen species and nitric oxide in chemical and biological model systems, J. Agric. Food Chem., 51, 5271–5277.

    Article  PubMed  CAS  Google Scholar 

  9. Willcox, J.K., Ash, S.L., and Catignani, G.L. (2004) Antioxidant and prevention of chronic disease, Crit. Rev. Food Sci. Nutr., 44, 275–295.

    Article  PubMed  CAS  Google Scholar 

  10. Witztum, J.L., and Steinberg, D. (1991) Role of oxidized low density lipoprotein in atherogenesis, J. Clin. Invest., 88, 1785–1792.

    PubMed  CAS  Google Scholar 

  11. Harrison, D., Griendling, K.K., Landmesser, U., Hornig, B., and Drexler, H. (2003) Role of oxidative stress in atherosclerosis, Am. J. Cardiol., 91, 7A-11A.

    Article  PubMed  CAS  Google Scholar 

  12. Kleinveld, H.A., Hak-Lemmers, H.L.M., Stalenhoef, A.F.H., and Demacker, P.N.M. (1992) Improved measurement of lowdensity lipoprotein susceptibility to copper-induced oxidation: Application of a short procedure for isolating low-density lipoprotein, Clin. Chem., 38, 2066–2072.

    PubMed  CAS  Google Scholar 

  13. Gutteridge, J.M.C., and Halliwell, B. (1990) The measurement and mechanism of lipid peroxidation in biological systems, Trends Biochem. Sci., 15, 129–135.

    Article  PubMed  CAS  Google Scholar 

  14. Lin, K.Y., Chen, Y.L., Shih, C.C., Pan, J.P., Chan, W.E., and Chiang, A.N. (2002) Contribution of HDL-apolipoproteins to the inhibition of low density lipoprotein oxidation and lipid accumulation in macrophages, J. Cell Biochem., 86, 258–267.

    Article  PubMed  CAS  Google Scholar 

  15. Chiang, A.N., Chang, C.P., Chou, Y.C., Huang, K.Y., and Hu, H.H. (1999) Differential distribution of apolipoprotein E in young and aged spontaneously hypertensive and stroke-prone rats. J. Hypertens., 17, 793–800.

    Article  PubMed  CAS  Google Scholar 

  16. Lin, K.Y., Pan, J.P., Yang, D.L., Huang, K.T., Chang, M.S., Ding, P.Y.A., and Chiang, A.N. (2001) Evidence for inhibition of low density lipoprotein oxidation and cholesterol accumulation by apolipoprotein H (α2-glycoprotein), Life Sci., 69, 707–719.

    Article  PubMed  CAS  Google Scholar 

  17. Wu, X., Gu, L., Prior, R.L., Mckay, S. (2004) Characterization of anthocyanins and proanthocyanins in some cultivars of Ribes, Aronia and Sambucus and their antioxidant capacity, J. Agric. Food Chem., 52, 7846–7856.

    PubMed  CAS  Google Scholar 

  18. Denizot, F. and Lang, R. (1986) Rapid colorimetric assay for cell growth and survival: Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability, J. Immunol. Methods, 89, 271–277.

    Article  PubMed  CAS  Google Scholar 

  19. Lebel, C.P., Ishiropoulos, H., and Bondy, S.C. (1992) Evaluation of the probe 2′,7′-dichlorofluorescein as an indicator of reactive oxygen species formation and oxidative stress, Chem. Res. Toxicol., 5, 227–231.

    Article  PubMed  CAS  Google Scholar 

  20. Kobzik, L., Godleski, J.J., and Brain, J.D. (1990) Oxidative metabolism in the alveolar macrophage: Analysis by flow cytometry, J. Leukocyte Biol., 47, 295–303.

    PubMed  CAS  Google Scholar 

  21. Wang, H.H., Hung, T.M., Wei, J., and Chiang, A.N. (2004) Fish oil increases antioxidant enzyme activities in macrophages and reduces atheroslerotic lesions in apoE-knockout mice, Cardiovas. Res., 61, 169–176.

    Article  CAS  Google Scholar 

  22. Oyanatui, Y. (1984) Reevaluation of assay methods and establishment of kit for superoxide dismutase activity, Anal. Biochem., 142, 290–296.

    Article  Google Scholar 

  23. Aebi, H. (1984) Catalase in vitro, Methods Enzymol., 105, 121–126.

    PubMed  CAS  Google Scholar 

  24. Flohe, L. and Gunzler, W.A. (1984) Assays of glutathione peroxidase, Methods Enzymol., 105, 114–121.

    Article  PubMed  CAS  Google Scholar 

  25. Yagi, K. (1984) Lipid peroxidation. Assay for blood plasma and serum, Methods Enzymol., 105, 328–331.

    PubMed  CAS  Google Scholar 

  26. Kong, J.M., Chia, L.S., Goh, N.K., Chia, T.F., and Brouillard, R. (2003) Analysis and biological activities of anthocyanins, Phytochem., 64, 923–933.

    Article  CAS  Google Scholar 

  27. Serraino, I., Dugo, L., Dugo, P., Mondello, L., Mazzon, E., Dugo, G., Caputi, A.P., and Cuzzocrea, S. (2003) Protective effects of cyanidin-3-O-glucoside from blackberry extract against peroxynitrite-induced endothelial dysfunction and vascular failure, Life Sci., 73, 1097–1114.

    Article  PubMed  CAS  Google Scholar 

  28. Slater, T.F. and Cheeseman, K.H. (1993) An introduction to free radical biochemistry, British Med. Bulletin, 49, 481–493.

    Google Scholar 

  29. Calabresi, L., and Franceschini, G. (1997) High density lipoprotein and coronary heart disease: Insights from mutations leading to low high density lipoprotein, Curr. Opin. Lipidol., 8, 219–224.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An-Na Chiang.

About this article

Cite this article

Chiang, AN., Wu, HL., Yeh, HI. et al. Antioxidant effects of black rice extract through the induction of superoxide dismutase and catalase activities. Lipids 41, 797–803 (2006). https://doi.org/10.1007/s11745-006-5033-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-006-5033-6

Keywords

Navigation