Skip to main content
Log in

Trans isomeric octadecenoic acids are related inversely to arachidonic acid and DHA and positively related to mead acid in umbilical vessel wall lipids

  • Articles
  • Published:
Lipids

Abstract

Long-chain PUFA play an important role in early human neurodevelopment. Significant inverse correlations were reported between values of trans isomeric and long-chain PUFA in plasma lipids of preterm infants and children aged 1–15 yr as well as in venous cord blood lipids of full-term infants. Here we report FA compositional data of cord blood vessel wall lipids in 308 healthy, full-term infants (gestational age: 39.7±1.2 wk, birth weight: 3528±429 g, mean±SD). The median (interquartile range) of the sum of 18-carbon trans FA was 0.22 (0.13)% w/w in umbilical artery and 0.16 (0.10)% w/w in umbilical vein lipids. Nonparametric correlation analysis showed significant inverse correlations between the sum of 18-carbon trans FA and both arachidonic acid and DHA in artery (r=−0.38, P<0.01, and r=−0.20, P<0.01) and vein (r=−0.36, P<0.01, and −0.17, P<0.01) wall lipids. In addition, the sum of 18-carbon trans FA was significantly positively correlated to Mead acid, a general indicator of EFA deficiency, in both artery (r=+0.35, P<0.01) and vein (r=+0.31, P<0.01) wall lipids. The present results obtained in a large group of full-term infants suggest that maternal trans FA intake is inversely associated with long-chain PUFA status of the infant at birth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Cis unsaturated FA: 18∶1n−9:

cis-9-oleic acid

18∶2n−6:

all-cis-9,12-linoleic acid

18∶3n−3:

all-cis-9, 12,15α-linolenic acid

20∶3n−9:

all-cis-5,8,11-eicosatrienoic acid

20∶4n−6:

all-cis-5,8,11,14-arachidonic acid

22∶6n−3:

all-cis-4,7,10,13,16,19-docosahexaenoic acid

Trans isomeric FA: t-16:

trans-7-hexadecenoic acid

t-18∶1:

trans-9/11-octadecenoic acid

tt-18∶2:

all-trans-9, 12-octadecadienoic acid

tc-18∶2:

trans-9, cis-12-octadecadienoic acid

ct-18∶2:

cis-9, trans-12-octadecadienoic acid

References

  1. Innis, S.M. (1991) Essential Fatty Acids in Growth and Development, Prog. Lipid. Res. 30, 39–130.

    Article  PubMed  CAS  Google Scholar 

  2. Decsi, T., and Koletzko, B. (1994) Polyunsaturated Fatty Acids in Infant Nutrition, Acta Paediatr. Suppl. 395, 31–37.

    Article  Google Scholar 

  3. Carlson, S.E., and Neuringer, M. (1999) Polyunsaturated Fatty Acid Status and Neurodevelopment: A Summary and Critical Analysis of the Literature, Lipids 34, 171–178.

    Article  PubMed  CAS  Google Scholar 

  4. Decsi, T., and Koletzko, B. (2000) Role of Long-Chain Polyunsaturated Fatty Acids in Early Human Neurodevelopment, Nutr. Neurosci, 3, 293–306.

    CAS  Google Scholar 

  5. Birch, E.E., Garfield, S., Hoffman, D.R., Uauy, R., and Birch, D.G. (2000) A Randomized Controlled Trial of Early Dietary Supply of Long-Chain Polyunsaturated Fatty Acids and Mental Development in Term Infants, Dev. Med. Child Neurol. 42, 174–181.

    Article  PubMed  CAS  Google Scholar 

  6. Smit, E.N., Koopmann, M., Boersma, E.R., and Muskiet, F.A. (2000) Effect of Supplementation of Arachidonic Acid (AA) or a Combination of AA Plus Docosahexaenoic Acid on Breast-milk Fatty Acid Composition, Prostaglandins Leukot. Essent. Fatty Acids 62, 335–340.

    Article  PubMed  CAS  Google Scholar 

  7. Makrides, M., Neumann, M.A., Simmer, K., and Gibson, R.A. (2000) A Critical Appraisal of the Role of Dietary Long-Chain Polyunsaturated Fatty Acids on Neural Indices of Term Infants: A Randomized, Controlled Trial, Pediatrics 105, 32–38.

    Article  PubMed  CAS  Google Scholar 

  8. Velzing-Aarts, F.V., Klis, F.R. van der, Dijs, F.P. van der, Beusekom, C.M. van, Landman, H., Capello, J.J., and Muskiet, F.A. (2000) Effect of Three Low-Dose Fish Oil Supplements, Administered During Pregnancy, on Neonatal Long-Chain Polyunsaturated Fatty Acid Status at Birth, Prostaglandins Leukot. Essent. Fatty Acids 65, 51–57.

    Article  Google Scholar 

  9. Auestad, N., Halter, R., Hall, R.T., Blatter, M., Bogle, M.L., Burks, W., Erickson, J.R., Fitzgerald, K.M., Dobson, V., Innis, S.M., et al. (2001) Growth and Development in Term Infants Fed Long-Chain Polyunsaturated Fatty Acids: A Double-Masked, Randomized, Parallel, Prospective, Multivariate Study, Pediatrics 108, 372–381.

    Article  PubMed  CAS  Google Scholar 

  10. Guesnet, P., Pugo-Gunsam, P., Maurage, C., Pinault, M., Giraudeau, B., Alessandri, J.-M., Durand, G., Antoine, J.-M., and Couet, C. (1999) Blood Lipid Concentrations of Docosahexaenoic and Arachidonic Acids at Birth Determine Their Relative Postnatal Changes in Term Infants Fed Breast Milk or Formula, Am. J. Clin. Nutr. 70, 292–298.

    PubMed  CAS  Google Scholar 

  11. Hornstra, G. (2000) Essential Fatty Acids in Mothers and Their Neonates, Am. J. Clin. Nutr. 70 (5 Suppl.), 1262S-1269S.

    Google Scholar 

  12. Koletzko, B. (1992) Trans Fatty Acids May Impair Biosynthesis of Long-Chain polyunsaturates and Growth in Man, Acta Paediatr. Scand. 81, 302–306.

    CAS  Google Scholar 

  13. Decsi, T., and Koletzko, B. (1995) Do trans Fatty Acids Impair Linoleic Acid Metabolism in Children, Ann. Nutr. Metab. 39, 36–41.

    Article  PubMed  CAS  Google Scholar 

  14. Elias, S.L., and Innis, S.M. (2001) Infant Plasma trans, n−6 and n−3 Fatty Acids and Conjugated Linoleic Acids Are Related to Maternal Plasma Fatty Acids, Length of Gestation, and Birth Weight and Length, Am. J. Clin. Nutr. 73, 807–814.

    PubMed  CAS  Google Scholar 

  15. Decsi, T., Burus, I., Molnár, S., Minda, H., and Vietl, V. (2001) Inverse Association Between trans Isomeric and Long-Chain Polyunsaturated Fatty Acids in Cord Blood Lipids of Full-Term Infants, Am. J. Clin. Nutr. 74, 364–368.

    PubMed  CAS  Google Scholar 

  16. Muskiet, F.A.J., Doormaal, J.J., van, Martini, I.A., Wolthers, B.G., and Slik, W. van der (1983) Capillary Gas Chromatographic Profiling of Total Long-Chain Fatty Acids and Cholesterol in Biological Materials, J. Chromatogr. Biomed. Appl. 278, 231–244.

    Article  CAS  Google Scholar 

  17. Al, M.D., Badart-Smook, A., Houwelingen, A.C. van, Hasart, T.H., and Hornstra, G. (1996) Fat Intake of Women During Normal Pregnancy: Relationship with Maternal and Neonatal Essential Fatty Acid Status, J. Am. Coll. Nutr. 15, 49–55.

    PubMed  CAS  Google Scholar 

  18. Holman, R.T., Pusch, F., Svingen, B., and Dutton, H.J. (1991) Unusual Isomeric Polyunsaturated Fatty Acids in Liver Phospholipids of Rats Fed Hydrogenated Oil, Proc. Natl. Acad. Sci. USA 88, 4830–4834.

    Article  PubMed  CAS  Google Scholar 

  19. Koletzko, B., and Decsi, T. (1997) Metabolic Aspects of trans Fatty Acids, Clin. Nutr. 16, 229–237.

    Article  PubMed  CAS  Google Scholar 

  20. Hunter, J.E., and Applewhite, T.H. (1991) Reassessment of trans-Fatty Acid Availability in the U.S. Diet, Am. J. Clin. Nutr. 54, 363–369.

    PubMed  CAS  Google Scholar 

  21. Enig, M.G., Atal, S., Keeny, M., and Sampugna, J. (1990) Isomeric trans Fatty Acids in the U.S. Diet, J. Am. Coll. Nutr. 9, 471–486.

    PubMed  CAS  Google Scholar 

  22. The British Nutrition Foundation (1995) Unsaturated Fatty Acids. Nutritional and Physiological Significance. The Report of the British Nutrition Foundation’s Task Force, 15 pp. Chapman & Hall, London.

    Google Scholar 

  23. Carlson, S.E., Clandinin, M.T., Cook, H.W., Emken, E.E., and Filer, L.J. (1997) Trans Fatty Acids: Infant and Fetal Development, Am. J. Clin. Nutr. 66, 717S-736S.

    Google Scholar 

  24. Innis, S.M., and King, D.J. (1999) Trans Fatty Acids in Human Milk Are Inversely Associated with Concentrations of all-cis n−6 and n−3 Fatty Acids and Determine trans, but Not n−6 and n−3, Fatty Acids in Plasma Lipids of Breast-Fed Infants, Am. J. Clin. Nutr. 70, 383–390.

    PubMed  CAS  Google Scholar 

  25. Gezondsheidsraad (2001) Voedingsnormen: energie, eiwitten, vetten en verteerbare koolhydraten, publicatie nr. 2001/19, Gezondheidsraad, Den Haag.

    Google Scholar 

  26. ASCN/AIN (1996) Position Paper on Trans Fatty Acids. ASCN/AIN Task Force on trans Fatty Acids. American Society for Clinical Nutrition and American Institute of Nutrition, Am. J. Clin. Nutr. 63, 663–670.

    Google Scholar 

  27. Stender, S., Dyerberg, J., Holmer, G., Ovesen, L., and Sandström, B. (1995) The Influence of trans Fatty Acids on Health: A Report from The Danish Nutrition Council, Clin. Sci. 88, 375–392.

    PubMed  CAS  Google Scholar 

  28. Decsi, T., and Koletzko, B. (1994) Fatty Acid Composition of Plasma Lipid Classes in Healthy Subjects from Birth to Young Adulthood, Eur. J. Pediatr. 53, 520–525.

    Article  Google Scholar 

  29. Mahfouz, M.M., Smith, T.L., and Kummerow, F.A. (1984) Effects of Dietary Fats on Desaturase Activities and the Biosynthesis of Fatty Acids in Rat Liver Microsomes, Lipids 19, 214–222.

    PubMed  CAS  Google Scholar 

  30. Rosenthal, M.D., and Doloresco, M.A. (1984) The Effects of trans Fatty Acids on Fatty Acyl Δ5 Desaturation by Human Skin Fibroblasts, Lipids 19, 869–874.

    PubMed  CAS  Google Scholar 

  31. Anderson, R.L., Fullmer, C.S., and Hollenbach, E.J. (1975) Effects of trans Isomers of Linoleic Acid on the Metabolism of Linoleic Acid in Rats, J. Nutr. 105, 393–400.

    PubMed  CAS  Google Scholar 

  32. Hill, E.G., Johnson, S.B., Lawson, L.D., Mahfouz, M.M., and Holman, R.T. (1982) Perturbation of the Metabolism of Essential Fatty Acids by Dietary Partially Hydrogenated Vegetable Oils, Proc. Natl. Acad. Sci. USA 79, 953–957.

    Article  PubMed  CAS  Google Scholar 

  33. Hwang, D.H., Chanmugam, P., and Anding, R. (1982) Effects of Dietary 9-trans-12-trans Linoleate on Arachidonic Acid Metabolism in Rat Platelets, Lipids 17, 307–313.

    PubMed  CAS  Google Scholar 

  34. Lawson, L.D., Hill, E.G., and Holman, R.T. (1983) Suppression of Arachidonic Acid in Lipids of Rat Tissues by Dietary Mixed Isomeric cis and trans Octadecanoates, J. Nutr. 113, 1827–1835.

    PubMed  CAS  Google Scholar 

  35. Bruckner, G., Goswami, S., and Kinsella, J.E. (1984) Dietary Trilinoelaidate: Effects on Organ Fatty Acid Composition, Prostanoid Biosynthesis and Platelet Function in Rats, J. Nutr. 114, 58–67.

    PubMed  CAS  Google Scholar 

  36. Larqué, E., Pérez-Llamas, F., Puerta, V., Girón, M., Suárez, M.D., Zamora, S., and Gil, A. (2000) Dietary trans Fatty Acids Affect Docosahexaenoic Acid Concentrations in Plasma and Liver but Not Brain of Pregnant and Fetal Rats, Pediatr. Res. 47, 278–283.

    PubMed  Google Scholar 

  37. Campbell, F.M., Gordon, M.J., and Dutta-Roy, A.K. (1996) Preferential Uptake of Long-Chain Polyunsaturated Fatty Acids by Isolated Human Placental Membranes, Mol. Cell. Biochem. 155, 77–83.

    Article  PubMed  CAS  Google Scholar 

  38. Dutta-Roy, A.K. (1997) Transfer of Long-Chain Polyunsaturated Fatty Acids Across the Human Placenta, Prenat. Neonat. Med. 2, 101–107.

    CAS  Google Scholar 

  39. Holman, R.T., Johnson, S.B., Mercuri, O., Itarte, H.J., Rodrigo, M.A., and De Tomas, M.E. (1981) Essential Fatty Acid Deficiency in Malnourished Children, Am. J. Clin. Nutr. 34, 1534–1539.

    PubMed  CAS  Google Scholar 

  40. Hornstra, G., Houwelingen, A.C. van, Simonis, M., and Gerrard, J.M. (1989) Fatty Acid Composition of Umbilical Arteries and Veins: Possible Implications for the Fetal EFA-Status, Lipids 24, 511–517.

    PubMed  CAS  Google Scholar 

  41. Velzin-Aarts F.V., Klis, F.R.M. van der, Dijs, F.P.L. van der, and Muskiet, F.A.J. (1999) Umbilical Vessels of Preeclamptic Women Have Low Contents of Both n−3 and n−6 Long-Chain Polyunsaturated Fatty Acids, Am. J. Clin. Nutr. 69, 293–298.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Decsi.

About this article

Cite this article

Decsi, T., Boehm, G., Tjoonk, H.M.R. et al. Trans isomeric octadecenoic acids are related inversely to arachidonic acid and DHA and positively related to mead acid in umbilical vessel wall lipids. Lipids 37, 959–965 (2002). https://doi.org/10.1007/s11745-006-0987-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-006-0987-y

Keywords

Navigation