Skip to main content
Log in

Mitochondrial cholesterol transport: A possible target in the management of hyperlipidemia

  • Articles
  • Published:
Lipids

Abstract

Sterol 27-hydroxylase (CYP27A1) may defend cells against accumulation of excess cholesterol, making this enzyme a possible target in the management of hyperlipidemia. The study objective was to analyze cholesterol homeostatic responses to increases in CYP27A1 activity in HepG2 cells and primary human hepatocytes. Increasing CYP27A1 activity by increasing enzyme expression led to significant increases in bile acid synthesis with compensatory increases in HMG-CoA reductase (HMGR) activity/protein, LDL receptor (LDLR) mRNA, and LDLR-mediated cholesterol uptake. Under these conditions, only a small increase in cellular 27-hydroxycholesterol (27OH-Chol) concentration was observed. No changes were detected in mature sterol regulatory element-binding proteins (SREBP) 1 or 2. Increasing CYP27A1 activity by increasing mitochondrial cholesterol transport (i.e., substrate availability) led to greater increases in bile acid synthesis with significant increases in cellular 27OH-Chol concentration. Mature SREBP 2 protein decreased significantly with compensatory decreases in HMGR protein. No change was detected in mature SREBP 1 protein. Despite increasing 27OH-Chol and lowering SREBP 2 protein concentrations, LDLR mRNA increased significantly, suggesting alternative mechanisms of LDLR transcriptional regulation. These findings suggest that regulation of liver mitochondrial cholesterol transport represents a potential therapeutic strategy in the treatment of hyperlipidemia and atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

27OH-Chol:

27-hydroxycholesterol, cholesten-5-ene-3β,25R(26)-diol

ATCC:

American Type Culture Collection

Chol:

cholesterol

CTX:

cerebrotendinous xanthomatosis

CYP7B1:

oxysterol 7α hydroxylase

CYP27A1:

sterol 27-hydroxylase

DiI:

1,1′-dioctadecyl-3,3,3′,3′-tetramethyl-indocarbocyanine perchlorate

ECL:

enhanced chemiluminescence

HMGR:

HMG-CoA reductase

HRP:

horseradish peroxidase

LDLR:

LDL-receptor

LPDS:

lipoprotein-deficient serum

SR-B1:

HDL-receptor

SREBP:

sterol regulatory element-binding protein

StAR:

steroidogenic acute regulatory protein

References

  1. Pikuleva, I.A., Babiker, A., Waterman, M.R., and Bjorkhem, I. (1998) Activities of Recombinant Human Cytochrome P450c27 (CYP27) Which Produce Intermediates of Alternative Bile Acid Biosynthetic Pathways, J. Biol. Chem. 273, 18153–18160.

    Article  PubMed  CAS  Google Scholar 

  2. Pandak, W.M., Ren, S., Marqeus, D., Hall, E., Redford, K., Mallonee, D., Bohdan, P., Heuman, D., Gil, G., and Hylemon, P.B. (2002) Transport of Cholesterol into Mitochondria Is Rate-Limiting for Bile Acid Synthesis via the Alternative Pathway in Primary Rat Hepatocytes, J. Biol. Chem. 277, 48158–48164.

    Article  PubMed  CAS  Google Scholar 

  3. Ren, S., Hylemon, P.B., Marques, D., Gurley, E., Bodhan, P., Hall, E., Redford, K., Gil, G., and Pandak, W.M. (2004) Overexpression of Cholesterol Transporter StAR Increases in vivo Rates of Bile Acid Synthesis in the Rat and Mouse, Hepatology 40, 910–917.

    Article  PubMed  CAS  Google Scholar 

  4. Hall, E.A., Ren, S., Hylemon, P.B., Rodriguez-Agudo, D., Redford, K., Marques, D., Kang, D., Gil, G., and Pandak, W.M. (2005) Detection of the Steroidogenic Acute Regulatory Protein, StAR, in Human Liver Cells, Biochim. Biophys. Acta 1733, 111–119.

    PubMed  CAS  Google Scholar 

  5. Ellsworth, J.L., Carlstrom, A.J., and Deikman, J. (1994) Ketoconazole and 25-Hydroxycholesterol Produce Reciprocal Changes in the Rate of Transcription of the Human LDL Receptor Gene, Biochim. Biophys. Acta 1210, 321–328.

    PubMed  CAS  Google Scholar 

  6. Schroepfer, G.J., Jr. (2000) Oxysterols: Modulators of Cholesterol Metabolism and Other Processes, Physiol. Rev. 80, 361–554.

    PubMed  CAS  Google Scholar 

  7. Moriyama, T., Wada, M., Urade, R., Kito, M., Katunuma, N., Ogawa, T., and Simoni, R.D. (2001) 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase Is Sterol-Dependently Cleaved by Cathepsin L-Type Cysteine Protease in the Isolated Endoplasmic Reticulum, Arch. Biochem. Biophys. 386, 205–212.

    Article  PubMed  CAS  Google Scholar 

  8. Tam, S.P., Brissette, L., Ramharack, R., and Deeley, R.G. (1991) Differences Between the Regulation of 3-Hydroxy-3-methylglutaryl-Coenzyme A Reductase and Low Density Lipoprotein Receptor in Human Hepatoma Cells and Fibroblasts Reside Primarily at the Translational and Post-translational Levels, J. Biol. Chem. 266, 16764–16773.

    PubMed  CAS  Google Scholar 

  9. Axelson, M., Larsson, O., Zhang, J., Shoda, J., and Sjovall, J. (1995) Structural Specificity in the Suppression of HMG-CoA Reductase in Human Fibroblasts by Intermediates in Bile Acid Biosynthesis, J. Lipid Res. 36, 290–298.

    PubMed  CAS  Google Scholar 

  10. Bjorkhem, I., Andersson, O., Diczfalusy, U., Sevastik, B., Xiu, R.J., Duan, C., and Lund, E. (1994) Atherosclerosis and Sterol 27-Hydroxylase: Evidence for a Role of This Enzyme in Elimination of Cholesterol from Human Macrophages, Proc. Natl. Acad. Sci. USA 91, 8592–8596.

    Article  PubMed  CAS  Google Scholar 

  11. Martin, K.O., Reiss, A.B., Lathe, R., and Javitt, N.B. (1997) 7 α-Hydroxylation of 27-Hydroxycholesterol: Biologic Role in the Regulation of Cholesterol Synthesis, J. Lipid Res. 38, 1053–1058.

    PubMed  CAS  Google Scholar 

  12. Christenson, L.K., and Strauss, J.F., III (2000) Steroidogenic Acute Regulatory Protein (StAR) and the Intramitochondrial Translocation of Cholesterol, Biochim. Biophys. Acta 1529, 175–187.

    PubMed  CAS  Google Scholar 

  13. Hall, E., Hylemon, P., Vlahcevic, Z., Mallonee, D., Valerie, K., Avadhani, N., and Pandak, W. (2001) Overexpression of CYP27 in Hepatic and Extrahepatic Cells: Role in the Regulation of Cholesterol Homeostasis, Am. J. Physiol. Gastrointest. Liver Physiol. 281, G293-G301.

    PubMed  CAS  Google Scholar 

  14. Arakane, F., Kallen, C.B., Watari, H., Foster, J.A., Sepuri, N.B., Pain, D., Stayrook, S.E., Lewis, M., Gerton, G.L., and Strauss, J.F., III (1998) The Mechanism of Action of Steroidogenic Acute Regulatory Protein (StAR). StAR Acts on the Outside of Mitochondria to Stimulate Steroidogenesis, J. Biol. Chem. 273, 16339–16345.

    Article  PubMed  CAS  Google Scholar 

  15. Pandak, W.M., Schwarz, C., Hylemon, P.B., Mallonee, D., Valerie, K., Heuman, D.M., Fisher, R.A., Redford, K., and Vlahcevic, Z.R. (2001) Effects of CYP7A1 Overexpression on Cholesterol and Bile Acid Homeostasis, Am. J. Physiol. Gastrointest. Liver Physiol. 281, G878-G889.

    PubMed  CAS  Google Scholar 

  16. Stravitz, R.T., Vlahcevic, Z.R., Russell, T.L., Heizer, M.L., Avadhani, N.G., and Hylemon, P.B. (1996) Regulation of Sterol 27-Hydroxylase and an Alternative Pathway of Bile Acid Biosynthesis in Primary Cultures of Rat Hepatocytes, J. Steroid Biochem. Mol. Biol. 57, 337–347.

    Article  PubMed  CAS  Google Scholar 

  17. Vlahcevic, Z.R., Stravitz, R.T., Heuman, D.M., Hylemon, P.B., and Pandak, W.M. (1997) Quantitative Estimations of the Contribution of Different Bile Acid Pathways to Total Bile Acid Synthesis in the Rat, Gastroenterology 113, 1949–1957.

    Article  PubMed  CAS  Google Scholar 

  18. Wang, X., Sato, R., Brown, M.S., Hua, X., and Goldstein, J.L. (1994) SREBP-1, a Membrane-Bound Transcription Factor Released by Sterol-Regulated Proteolysis, Cell 77, 53–62.

    Article  PubMed  CAS  Google Scholar 

  19. Petrack, B., and Latario, B.J. (1993) Synthesis of 27-Hydroxycholesterol in Rat Liver Mitochondria: HPLC Assay and Marked Activation by Exogenous Cholesterol, J. Lipid Res. 34, 643–649.

    PubMed  CAS  Google Scholar 

  20. Shefer, S., Hauser, S., Lapar, V., and Mosbach, E.H. (1972) HMG CoA Reductase of Intestinal Mucosa and Liver of the Rat, J. Lipid Res. 13, 402–412.

    PubMed  CAS  Google Scholar 

  21. Pandak, W.M., Li, Y.C., Chiang, J.Y., Studer, E.J., Gurley, E.C., Heuman, D.M., Vlahcevic, Z.R., and Hylemon, P.B. (1991) Regulation of Cholesterol 7α-Hydroxylase mRNA and Transcriptional Activity by Taurocholate and Cholesterol in the Chronic Biliary Diverted Rat, J. Biol. Chem. 266, 3416–3421.

    PubMed  CAS  Google Scholar 

  22. Su, P., Rennert, H., Shayiq, R.M., Yamamoto, R., Zheng, Y.M., Addya, S., Strauss, J.F., III, and Avadhani, N.G. (1990) A cDNA Encoding a Rat Mitochondrial Cytochrome P450 Catalyzing Both the 26-Hydroxylation of Cholesterol and 25-Hydroxylation of Vitamin D3: Gonadotropic Regulation of the Cognate mRNA in Ovaries, DNA Cell Biol. 9, 657–667.

    Article  PubMed  CAS  Google Scholar 

  23. Day, R., Gebhard, R.L., Schwartz, H.L., Strait, K.A., Duane, W.C., Stone, B.G., and Oppenheimer, J.H. (1989) Time Course of Hepatic 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase Activity and Messenger Ribonucleic Acid, Biliary Lipid Secretion, and Hepatic Cholesterol Content in Methimazole-Treated Hypothyroid and Hypophysectomized Rats After Triiodothyronine Administration: Possible Linkage of Cholesterol Synthesis to Biliary Secretion, Endocrinology 125, 459–468.

    Article  PubMed  CAS  Google Scholar 

  24. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  25. Kubaska, W.M., Gurley, E.C., Hylemon, P.B., Guzelian, P.S., and Vlahcevic, Z.R. (1985) Absence of Negative Feedback Control of Bile Acid Biosynthesis in Cultured Rat Hepatocytes, J. Biol. Chem. 260, 13459–13463.

    PubMed  CAS  Google Scholar 

  26. Laemmli, U.K. (1970) Cleavage of Structural Proteins During the Assembly of the Head of Bacteriophage T4, Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  27. Teupser, D., Thiery, J., Walli, A.K., and Seidel, D. (1996) Determination of LDL- and Scavenger-Receptor Activity in Adherent and Non-adherent Cultured Cells with a New Single-Step Fluorometric Assay, Biochim. Biophys. Acta 1303, 193–198.

    PubMed  Google Scholar 

  28. Chiang, J.Y. (2002) Bile Acid Regulation of Gene Expression: Roles of Nuclear Hormone Receptors, Endocr. Rev. 23, 443–463.

    Article  PubMed  CAS  Google Scholar 

  29. Chiang, J.Y. (2003) Bile Acid Regulation of Hepatic Physiology: III. Bile Acids and Nuclear Receptors, Am. J. Physiol. Gastrointest. Liver Physiol. 284, G349-G356.

    PubMed  CAS  Google Scholar 

  30. Chiang, J.Y. (2004) Regulation of Bile Acid Synthesis: Pathways, Nuclear Receptors, and Mechanisms, J. Hepatol. 40, 539–551.

    Article  PubMed  CAS  Google Scholar 

  31. Fang, Y., Han, S.I., Mitchell, C., Gupta, S., Studer, E., Grant, S., Hylemon, P.B., and Dent, P. (2004) Bile Acids Induce Mitochondrial ROS, Which Promote Activation of Receptor Tyrosine Kinases and Signaling Pathways in Rat Hepatocytes, Hepatology 40, 961–971.

    Article  PubMed  CAS  Google Scholar 

  32. Qiao, L., Studer, E., Leach, K., McKinstry, R., Gupta, S., Decker, R., Kukreja, R., Valerie, K., Nagarkatti, P., ElDeiry, W. et al. (2001) Deoxycholic Acid (DCA) Causes Ligand-Independent Activation of Epidermal Growth Factor Receptor (EGFR) and FAS Receptor in Primary Hepatocytes: Inhibition of EGFR/Mitogen-Activated Protein Kinase-Signaling Module Enhances DCA-Induced Apoptosis, Mol. Biol. Cell 12, 2629–2645.

    PubMed  CAS  Google Scholar 

  33. Qiao, L., Yacoub, A., Studer, E., Gupta, S., Pei, X.Y., Grant, S., Hylemon, P.B., and Dent, P. (2002) Inhibition of the MAPK and PI3K Pathways Enhances UDCA-Induced Apoptosis in Primary Rodent Hepatocytes, Hepatology 35, 779–789.

    Article  PubMed  CAS  Google Scholar 

  34. Qiao, L., Han, S.I., Fang, Y., Park, J.S., Gupta, S., Gilfor, D., Amorino, G., Valerie, K., Sealy, L., Engelhardt, J.F. et al. (2003) Bile Acid Regulation of C/EBPβ, CREB, and c-Jun function, via the Extracellular Signal-Regulated Kinase and c-Jun NH2-Terminal Kinase Pathways, Modulates the Apoptotic Response of Hepatocytes, Mol. Cell. Biol. 23, 3052–3066.

    Article  PubMed  CAS  Google Scholar 

  35. Rao, Y.P., Studer, E.J., Stravitz, R.T., Gupta, S., Qiao, L., Dent, P., and Hylemon, P.B. (2002) Activation of the Raf-1/MEK/ERK Cascade by Bile Acids Occurs via the Epidermal Growth Factor Receptor in Primary Rat Hepatocytes, Hepatology 35, 307–314.

    Article  PubMed  CAS  Google Scholar 

  36. Meir, K., Kitsberg, D., Alkalay, I., Szafer, F., Rosen, H., Shpitzen, S., Avi, L.B., Staels, B., Fievet, C., Meiner, V. et al. (2002) Human Sterol 27-Hydroxylase (CYP27) Overexpressor Transgenic Mouse Model. Evidence Against 27-Hydroxycholesterol as a Critical Regulator of Cholesterol Homeostasis, J. Biol. Chem. 277, 34036–34041.

    Article  PubMed  CAS  Google Scholar 

  37. Rosen, H., Reshef, A., Maeda, N., Lippoldt, A., Shpizen, S., Triger, L., Eggertsen, G., Bjorkhem, I., and Leitersdorf, E. (1998) Markedly Reduced Bile Acid Synthesis but Maintained Levels of Cholesterol and Vitamin D Metabolites in Mice with Disrupted Sterol 27-Hydroxylase Gene, J. Biol. Chem. 273, 14805–14812.

    Article  PubMed  CAS  Google Scholar 

  38. Honda, A., Salen, G., Matsuzaki, Y., Batta, A.K., Xu, G., Leitersdorf, E., Tint, G.S., Erickson, S.K., Tanaka, N., and Shefer, S. (2001) Side Chain Hydroxylations in Bile Acid Biosynthesis Catalyzed by CYP3A Are Markedly Up-Regulated in Cyp27 −/− Mice but Not in Cerebrotendinous Xanthomatosis, J. Biol. Chem. 276, 34579–34585.

    Article  PubMed  CAS  Google Scholar 

  39. Honda, A., Salen, G., Matsuzaki, Y., Batta, A.K., Xu, G., Leitersdorf, E., Tint, G.S., Erickson, S.K., Tanaka, N., and Shefer, S. (2001) Differences in Hepatic Levels of Intermediates in Bile Acid Biosynthesis Between Cyp27−/− Mice and CTX, J. Lipid Res. 42, 291–300.

    PubMed  CAS  Google Scholar 

  40. Repa, J.J., Lund, E.G., Horton, J.D., Leitersdorf, E., Russell, D.W., Dietschy, J.M., and Turley, S.D. (2000) Disruption of the Sterol 27-Hydroxylase Gene in Mice Results in Hepatomegaly and Hypertriglyceridemia. Reversal by Cholic Acid Feeding, J. Biol. Chem. 275, 39685–39692.

    Article  PubMed  CAS  Google Scholar 

  41. Makar, R.S., Lipsky, P.E., and Cuthbert, J.A. (2000) Multiple Mechanisms, Independent of Sterol Regulatory Element Binding Proteins, Regulate Low Density Lipoprotein Gene Transcription, J. Lipid Res. 41, 762–774.

    PubMed  CAS  Google Scholar 

  42. Winegar, D.A., Salisbury, J.A., Sundseth, S.S., and Hawke, R.L. (1996) Effects of Cyclosporin on Cholesterol 27-Hydroxylation and LDL Receptor Activity in HepG2 Cells, J. Lipid Res. 37, 179–191.

    PubMed  CAS  Google Scholar 

  43. Horton, J.A., and Shimomura, I. (1999) Sterol Regulatory Element-Binding Proteins: Activators of Cholesterol and Fatty Acid Biosynthesis, Curr. Opin. Lipidol. 10, 143–150.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. M. Pandak.

About this article

Cite this article

Hall, E.A., Ren, S., Hylemon, P.B. et al. Mitochondrial cholesterol transport: A possible target in the management of hyperlipidemia. Lipids 40, 1237–1244 (2005). https://doi.org/10.1007/s11745-005-1491-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-005-1491-0

Keywords

Navigation