Skip to main content
Log in

Recent advances in the biochemistry and clinical relevance of the isoprostane pathway

  • Review
  • Published:
Lipids

Abstract

Isoprostanes (IsoPs), lipid peroxidation products formed via the free radical-mediated oxidation of arachidonic acid, have become the “gold standard” biomarker of oxidative stress in vivo over the past 15 yr. Significant advances have been made in understanding this important pathway of lipid peroxidation. Recent studies from our laboratory are discussed that have provided insights into the mechanism of formation and regioisomeric distribution of these compounds and that have identified novel products of the IsoP pathway such as cyclized dioxolane IsoPs, IsoP-derived racemic prostaglandins, and reactive cyclopentenone IsoP, the latter of which possess potent biological actions. Furthermore, new independent studies have demonstrated that IsoPs are the most reliable available marker of lipid peroxidation in vivo, and recent work examining IsoP formation has provided valuable infromation about the pathogenesis of numerous human diseases. Thus, the complexity of the IsoP pathway has expanded, providing novel insights into mechanisms of lipid peroxidation in vivo and allowing investigators to explore the role of oxidative stress in human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid

AD:

Alzheimer’s diseae

APCI:

atmospheric pressure chemical ionization

COX:

cyclooxygenase

ESI:

electrospray ionization

GSH:

glutathione

IsoPs:

isoprostane

LPS:

lipopolysacharide

MDA:

malondaldehyde

NICI:

negative ion chemical ionization

PG:

prostaglandin

PPARγ:

peroxisome proliferator-activated receptor-gamma

ROS:

reactive oxygen species

References

  1. Morrow, J.D., Hill, K.E., Burk, R.F., Nammour, T.M., Badr, K.F., and Roberts, L.J., II (1990) A Series of Prostaglandin F2-like Compounds Are Produced in vivo in Humans by a Non-cyclooxygenase, Free Radical-Catalyzed Mechanism, Proc. Natl. Acad. Sci. USA 87, 9383–9387.

    Article  PubMed  CAS  Google Scholar 

  2. Morrow, J.D., Harris, T.M., and Roberts, L.J., II (1990) Noncyclooxygenase Oxidative Formation of a Series of Novel Prostaglandins: Analytical Ramifications for Measurement of Eicosanoids, Anal. Biochem. 184, 1–10.

    Article  PubMed  CAS  Google Scholar 

  3. Morrow, J.D., and Roberts, L.J., II (1999) Mass Spectrometric Quantification of F2-Isoprostanes in Biological Fluids and Tissues as Measure of Oxidant Stress, Methods Enzymol. 300, 3–12.

    Article  PubMed  CAS  Google Scholar 

  4. Taber, D.F., Morrow, J.D., and Roberts, L.J., II (1997) A Nomenclature System for the Isoprostanes, Prostaglandins 53, 63–67.

    Article  PubMed  CAS  Google Scholar 

  5. Morrow, J.D., Awad, J.A., Boss, H.J., Blair, I.A., and Roberts, L.J., II (1992) Non-cyclooxygenase-Derived Prostanoids (F2-isoprostanes) Are Formed in situ on Phospholipids, Proc. Natl. Acad. Sci. USA 89, 10721–10725.

    Article  PubMed  CAS  Google Scholar 

  6. Chen, Y., Morrow, J.D., and Roberts, L.J., II (1999) Formation of Reactive Cyclopentenone Compounds in vivo as Products of the Isoprostane Pathway, J. Biol. Chem. 274, 10863–10868.

    Article  PubMed  CAS  Google Scholar 

  7. Fam, S.S., and Morrow, J.D. (2003) The Isoprostanes: Unique Products of Arachidonic Acid Oxidation—A Review, Curr. Med. Chem. 10, 1723–1740.

    Article  PubMed  CAS  Google Scholar 

  8. Lawson, J.A., Rokach, J., and FitzGerald, G.A. (1999) Isoprostanes: Formation, Analysis and Use as Indices of Lipid Peroxidation in vivo, J. Biol. Chem. 274, 24441–24444.

    Article  PubMed  CAS  Google Scholar 

  9. Rokach, J., Khanapure, S.P., Hwang, S.W., Adiyaman, M., Lawson, J.A., and FitzGerald, G.A. (1997) Nomenclature of Isoprostanes: A Proposal, Prostaglandins 54, 853–873.

    Article  PubMed  CAS  Google Scholar 

  10. Morrow, J.D., and Roberts, L.J., II (2001) Lipid-Derived Autocoids: Eicosanoids and Platelet Activating Factor, in Goodman and Gilman’s The Pharmacological Basis of Therapeutics (Hardman, J.G., and Limbird, L.E., eds.), pp. 669–687, McGraw-Hill, New York.

    Google Scholar 

  11. Roberts, L.J., II, and Morrow, J.D. (2002) Products of the Isoprostane Pathway: Unique Bioactive Compounds and Markers of Lipid Peroxidation, Cell. Mol. Life Sci. 59, 808–820.

    Article  PubMed  CAS  Google Scholar 

  12. Rokach, J., Khanapure, S.P., Hwang, S.W., Adiyaman, M., Lawson, J.A., and FitzGerald, G.A. (1997) The Isoprostanes: A Perspective, Prostaglandins 54, 823–851.

    Article  PubMed  CAS  Google Scholar 

  13. Corey, E.J., and Wang, Z. (1994) Conversion of Arachidonic Acid to the Prostaglandin Endoperoxide PGG2, a Chemical Analog of the Biosynthetic Pathway, Tetrahedron Lett. 35, 539–542.

    Article  CAS  Google Scholar 

  14. Yin, H., Havrilla, C.M., Gao, L., Morrow, J.D., and Porter, N.A. (2003) Mechanisms for the Formation of Isoprostane Endoperoxides from Arachidonic Acid. “Dioxetane” Intermediate Versus β-Fragmentation of Peroxyl Radicals, J. Biol. Chem. 278, 16720–16725.

    Article  PubMed  CAS  Google Scholar 

  15. Waugh, R.J., Morrow, J.D., Roberts, L.J., II, and Murphy, R.C. (1997) Identification and Relative Quantitation of F2-Isoprostane Regioisomers Formed in vivo in the Rat, Free Radic. Biol. Med. 23, 943–954.

    Article  PubMed  CAS  Google Scholar 

  16. Yin, H., Morrow, J.D., and Porter, N.A. (2004) Identification of a Novel Class of Endoperoxides from Arachidonate Autoxidation, J. Biol. Chem. 279, 3766–3776.

    Article  PubMed  CAS  Google Scholar 

  17. Yin, H., Havrilla, C.M., Morrow, J.D., and Porter, N.A. (2002) Formation of Isoprostane Bicyclic Endoperoxides from the Autoxidation of Cholesteryl Arachidonate, J. Am. Chem. Soc. 124, 7745–7754.

    Article  PubMed  CAS  Google Scholar 

  18. Yin, H., Porter, N.A., and Morrow, J.D. (2005) Separation and Identification of F(2)-Isoprostane Regioisomers and Diastereomers by Novel Liquid Chromatographic/Mass Spectrometric Methods, J. Chromatogr. B, epub ahead of print.

  19. Morrow, J.D., Minton, T.A., Mukundan, C.R., Campbell, M.D., Zackert, W.E., Daniel, V.C., Badr, K.F., Blair, I.A., and Robets, L.J., II (1994) Free Radical-Induced Generation of Isoprostanes in vivo. Evidence for the Formation of D-Ring and E-Ring Isoprostanes, J. Biol. Chem. 269, 4317–4326.

    PubMed  CAS  Google Scholar 

  20. Montine, T.J., Montine, K.S., Reich, E.E., Terry, E.S., Porter, N.A., and Morrow, J.D. (2003) Antioxidants Significantly Affect the Formation of Different Classes of Isoprostanes and Neuroprostanes in Rat Cerebral Synaptosomes, Biochem. Pharmacol. 65, 611–617.

    Article  PubMed  CAS  Google Scholar 

  21. Montine, T.J., Neely, M.D., Quinn, J.F., Beal, M.F., Markesbery, W.R., Roberts, L.J., and Morrow, J.D. (2002) Lipid Peroxidation in Againg Brain and Alzheimer’s Disease, Free Radic. Biol. Med. 33, 620–626.

    Article  PubMed  CAS  Google Scholar 

  22. Reich, E.E., Markesbery, W.R., Roberts, L.J., II, Swift, L.L., Morrow, J.D., and Montine, T.J. (2001) Brain Regional Quantification of F-Ring and D-Æ-Ring Isoprostanes and Neuroprostanes in Alzheimer’s Disease, Am. J. Pathol. 158, 293–297.

    PubMed  CAS  Google Scholar 

  23. Reich, E.E., Markesbery, W.R., Roberts, L.J., II, Swift, L.L., Morrow, J.D., and Montine, T.J. (2001) Quantification of F-Ring and D-Æ-Ring Isoprostanes and Neuroprostanes in Alzheimer’s Disease, Adv. Exp. Med. Biol. 500, 253–256.

    PubMed  CAS  Google Scholar 

  24. Musiek, E.S., Milne, G.L., McLaughlin, B., and Morrow, J.D. (2005) Cyclopentenone Eicosanoids as Mediators of Neurodegeneration: A Pathogenic Mechanism of Oxidative Stress-Mediated and Cyclooxygenase-Mediated Neurotoxicity, Brain Pathol. 15, 149–158.

    Article  PubMed  CAS  Google Scholar 

  25. Milne, G.L., Musiek, E.S., and Morrow, J.D. (2005) The Cyclopentenone (A2/J2) Isoprostanes—Unique, Highly Reactive Products of Arachidonate Peroxidation, Antioxid. Redox Signal. 7, 210–220.

    Article  PubMed  CAS  Google Scholar 

  26. Milne, G.L., Zanoni, G., Porta, A., Sasi, S., Musiek, E.S., Freeman, M.L., and Morrow, J.D. (2004) The Cyclopentenone Product of Lipid Peroxidation, 15-A2t-Isoprostane. Is Efficiently Metabolized by HepG2 Cells via Conjugation with Glutathione, Chem. Res. Toxicol. 17, 17–25.

    Article  PubMed  CAS  Google Scholar 

  27. Hubatsch, I., Mannervik, B., Gao, L., Roberts, L.J., Chen, Y., and Morrow, J.D. (2002) The Cyclopentenone Product of Lipid Peroxidation, 15-A2t-Isoprostane (8-isoprostaglandin A2), Is Efficiently Conjugated with Glutathione by Human and Rat Glutathione Transferase A4−4, Chem. Res. Toxicol. 15, 1114–1118.

    Article  PubMed  CAS  Google Scholar 

  28. Milne, G.L., Gao, L., Zanoni, G., Vidari, G., and Morrow, J.D. (2005) Identification of the Major Urinary Metabolite of the Highly Reactive Cyclopentenone Isoprostane 15-A2t-Isoprostane in vivo, J. Biol. Chem. 280, 25178–25184.

    Article  PubMed  CAS  Google Scholar 

  29. Musiek, E.S., Milne, G.L., Breeding, R.L., Morrow, J.D., and McLaughlin, B. (2005) Cyclopentenone Isoprostanes, Novel Bioactive Products of Lipid Oxidation, Enhance Neurodegeneration, J. Neurochem., in press.

  30. Zanoni, G., Porta, A., and Vidari, G. (2002) First Total Synthesis of A2 Isoprostane, J. Org. Chem. 67, 4346–4351.

    Article  PubMed  CAS  Google Scholar 

  31. Zanoni, G., Porta, A., Castronovo, F., and Vidari, G. (2003) First Total Synthesis of J2 Isoprostane, J. Org. Chem. 68, 6005–6010.

    Article  PubMed  CAS  Google Scholar 

  32. Xie, C., Lovell, M.A., Xiong, S., Kindy, M.S., Guo, J., Xie, J., Amaranth, V., Montine, T.J., and Markesbery, W.R. (2001) Expression of Glutathione-S-Transferase Isozyme in the SY5Y Neuroblastoma Cell Line Increases Resistance to Oxidative Stress, Free Radic. Biol. Med. 31, 73–81.

    Article  PubMed  CAS  Google Scholar 

  33. Zimniak, L., Awasthi, S., Srivastava, S.K., and Zimniak, P. (1997) Increased Resistance to Oxidative Stress in Transfected Cultured Cells Overexpressing Glutathione S-Transferase mGSTA4-4, Toxicol. Appl. Pharmacol. 143, 221–229.

    Article  PubMed  CAS  Google Scholar 

  34. Beal, M.F. (1995) Aging, Energy, and Oxidative Stress in Neurodegenerative Diseases, Ann. Neurol. 38, 357–366.

    Article  PubMed  CAS  Google Scholar 

  35. Keller, J.N., and Mattson, M.P. (1998) Roles of Lipid Peroxidation in Modulation of Cellular Signaling Pathways, Cell Dysfunction, and Death in the Nervous System, Rev. Neurosci. 9, 105–116.

    PubMed  CAS  Google Scholar 

  36. Musiek, E.S., Gao, L., Milne, G.L., Han, W., Everhart, M.B., Wang, D., Backlund, M.G., Dubois, R.N., Zanoni, G., Vidari, G., Blackwell, T.S., and Morrow, J.D. (2005) Cyclopentenone isoprostanes inhibit the inflammatory response in macrophages, J. Biol. Chem. doi: 10.1074jbc.M504785200.

  37. Basu, S., Whiteman, M., Mattey, D.L., and Halliwell, B. (2001) Raised Levels of F2-Isoprostanes and Prostaglandin F in Different Rheumatic Diseases, Ann. Rheum. Dis. 60, 627–631.

    Article  PubMed  CAS  Google Scholar 

  38. Gao, L., Zackert, W.E., Hasford, J.J., Danekis, M.E., Milne, G.L., Remmert, C., Reese, J., Yin, H., Tai, H.H., Dey, S.K., et al. (2003) Formation of Prostaglandins E2 and D2 via the Isoprostane Pathway: A Mechanism for the Generation of Bioactive Prostaglandins Independent of Cyclooxygenase, J. Biol. Chem. 278, 28479–28489.

    Article  PubMed  CAS  Google Scholar 

  39. Murphey, L.J., Williams, M.K., Sanchez, S.C., Byrne, L.M., Csiki, I., Oates, J.A., Johnson, D.H., and Morrow, J.D. (2004) Quantification of the Major Urinary Metabolite of PGE2 by a Liquid Chromatographic/Mass Spectrometric Assay: Determination Of Cyclooxygenase-Specific PGE2 Synthesis in Healthy Humans and Those with Lung Cancer, Anal. Biochem. 334, 266–275.

    Article  PubMed  CAS  Google Scholar 

  40. Musiek, E.S., and Morrow, J.D. (2005) F2-Isoprostanes as Markers of Oxidant Stress: An Overview, in Current Protocols in Toxicology (Costa, L.G., Hodgson, E., Lawrence, D., and Reed, D.J., eds.), Supp. 24, 17.5–17.6, John Wiley & Sons, New York.

    Google Scholar 

  41. Praticò, D., Barry, O.P., Lawson, J.A., Adiyaman, M., Hwang, S.W., Khanapure, S.P., Iuliano, L., Rokach, J., and FitzGerald, G.A. (1998) IPF-I: An Index of Lipid Peroxidation in Humans, Proc. Natl. Acad. Sci. USA 95, 3449–3454.

    Article  PubMed  Google Scholar 

  42. Morrow, J.D., and Roberts, J., II (1997) The Isoprostanes: Unique Bioactive Products of Lipid Peroxidation, Prog. Lipid Res. 36, 1–21.

    Article  PubMed  CAS  Google Scholar 

  43. Roberts, J., II, Moore, K.P., Zackert, W.E., Oates, J.A., and Morrow, J.D. (1996) Identification of the Major Urinary Metabolite of the F2-Isoprostane 8-Iso-prostaglandin F in Humans, J. Biol. Chem. 271, 20617–20620.

    Article  PubMed  CAS  Google Scholar 

  44. Morrow, J.D., Zackert, W.E., Yang, J.P., Kurhts, E.H., Callewaert, D., Dworski, R., Kanaj, K., Taber, D., Moore, K., Oates, J.A., and Roberts, L.J. (1999) Quantification of the Major Urinary Metabolite of 15-F2t-Isoprostane (8-iso-PGF) by a Stable Isotope Dilution Mass Spectrometric Assay, Anal. Biochem. 269, 326–331.

    Article  PubMed  CAS  Google Scholar 

  45. Morales, C.R., Terry, E.S., Zackert, W.E., Montine, T.J., and Morrow, J.D. (2001) Improved Assay for the Quantification of the Major Urinary Metabolite of the Isoprostane 15-F2t-Isoprostane (8-iso-PGF) by a Stable Isotope Dilution Mass Spectrometric Assay, Clin. Chim. Acta 314, 93–99.

    Article  PubMed  CAS  Google Scholar 

  46. Kadiiska, M.B., Gladen, B.C., Baird, D.D., Germolec, D., Graham, L.B., Paker, C.E., Nyska, A., Wachsman, J.T., Ames, B.N., Basu, S., et al. (2005) Biomarkers of Oxidative Stress Study II. Are Oxidation Products of Lipids, Proteins, and DNA Markers of CCI4 Poisoning, Free Radic. Biol. Med. 38, 698–710.

    Article  PubMed  CAS  Google Scholar 

  47. Kadiiska, M.B., Gladen, B.C., Baird, D.D., Graham, L.B., Parker, C.E., Ames, B.N., Basu, S., FitzGerald, G.A., Lawson, J.A., Marnett, L.J., et al. (2005) Biomarkers of Oxidative Stress Study III. Effects of the Nonsteroidal Anti-Inflammatory Agents Indomethacin and Meclofenamic Acid on Measurements of Oxidative Products of Lipids in CCl4 Poisoning, Free Radic. Biol. Med. 38, 711–718.

    Article  PubMed  CAS  Google Scholar 

  48. Il’yasova, D., Morrow, J.D., Ivanova, A., and Wagenknecht, L.E. (2004) Epidemiological Marker for Oxidant Status: Comparison of the ELISA and the Gas Chromatography/Mass Spectrometry Assay for Urine 2,3-Dinor-5,6-dihydro-15-F2t-isoprostane, Ann. Epidemiol. 14, 793–797.

    Article  PubMed  Google Scholar 

  49. Li, H., Lawson, J.A., Reilly, M., Adiyaman, M., Hwang, S.W., Rokach, J., and FitzGerald, G.A. (1999) Quantitative High Performance Liquid Chromatography/Tandem Mass Spectrometric Analysis of the Four Classes of F2-Isoprostanes in Human Urine, Proc. Natl. Acad. Sci. USA 96, 13381–13386.

    Article  PubMed  CAS  Google Scholar 

  50. Bohnstedt, K.C., Karlberg, B., Wahlund, L.O., Jonhagen, M.E., Basun, H., and Schmidt, S. (2003) Determination of Isoprostanes in Urine Samples from Alzheimer Patients Using Porous Graphitic Carbon Liquid Chromatography-Tandem Mass Spectrometry, J. Chromatogr. B 796, 11–19.

    Article  CAS  Google Scholar 

  51. Ohashi, N., and Yoshikawa, M. (2000) Rapid and Sensitive Quantification of 8-Isoprostaglandin F in Human Plasma and Urine by Liquid Chromatography-Electrospray Ionization Mass Spectrometry, J. Chromatogr. B 746, 17–24.

    CAS  Google Scholar 

  52. Liang, Y., Wei, P., Duke, R.W., Reaven, P.D., Harman, S.M., Cutler, R.G., and Heward, C.B. (2003) Quantification of 8-Isoprostaglandin-F and 2,3-Dinor-8-iso-prostaglandin-F in Human Urine Using Liquid Chromatography-Tandem Mass Spectrometry, Free Radic. Biol. Med. 34, 409–418.

    Article  PubMed  CAS  Google Scholar 

  53. Morrow, J.D. (2005) Quantification of Isoprostanes as Indices of Oxidant Stress and the Risk of Atherosclerosis in Humans, Arterioscler. Thromb. Vasc. Biol. 25, 279–286.

    Article  PubMed  CAS  Google Scholar 

  54. Praticò, D., Tangirala, R.K., Rader, D.J., Rokach, J., and FitzGerald, G.A. (1998) Vitamin E Suppresses Isoprostane Generation in vivo and Reduces Atherosclerosis in ApoE-Deficient Mice, Nat. Med. 4, 1189–1192.

    Article  PubMed  Google Scholar 

  55. Praticò, D., Uryu, K., Leight, S., Trojanowski, J.Q., and Lee, V.M. (2001) Increased Lipid Peroxidation Precedes Amyloid Plaque Formation in an Animal Model of Alzheimer Amyloidosis, J. Neurosci. 21, 4183–4187.

    PubMed  Google Scholar 

  56. Kaikkonen, J., Porkkala-Sarataho, E., Morrow, J.D., Roberts, L.J., II, Nyyssonen, K., Salonen, R., Tuomainen, T.P., Ristonmaa, U., Poulsen, H.E., and Salonen, J.T. (2001) Supplementation with Vitamin E but Not with Vitamin C Lowers Lipid Peroxidation in vivo in Mildly Hypercholesterolemic Men, Free Radic. Res. 35, 967–978.

    Article  PubMed  CAS  Google Scholar 

  57. Patrono, C., and FitzGerald, G.A. (1997) Isoprostanes: Potential Markers of Oxidant Stress in Atherothrombotic Disease, Arterioscler. Thromb. Vasc. Biol. 17, 2309–2315.

    PubMed  CAS  Google Scholar 

  58. Davì, G., Ciabattoni, G., Consoli, A., Mezzetti, A., Falco, A., Santarone, S., Pennese, E., Vitacolonna, E., Bucciarelli, T., Costantini, F., et al. (1999) In vivo Formation of 8-Iso-Prostaglandin F and Platelet Activation in Diabetes Mellitus: Effects of Improved Metabolic Control and Vitamin E Supplementation, Circulation 99, 224–229.

    PubMed  Google Scholar 

  59. Hansel, B., Giral, P., Nobecourt, E., Chantepie, S., Bruckert, E., Chapman, M.J., and Kontush, A. (2004) Metabolic Syndrome Is Associated with Elevated Oxidative Stress and Dysfunctional Dense High-Density Lipoprotein Particles Displaying Impaired Antioxidative Activity, J. Clin. Endocrin. Metab. 89, 4963–4971.

    Article  CAS  Google Scholar 

  60. Morrow, J.D. (2003) Is Oxidant Stress a Connection Between Obesity and Atherosclerosis? Arterioscler. Thromb. Vasc. Biol. 23, 368–370.

    Article  PubMed  CAS  Google Scholar 

  61. Delnaty, N., Reilly, M.P., Praticò, D., Lawson, J.A., McCarthy, J.F., Wood, A.E., Ohnishi, S.T., Fitzgerald, D.J., and FitzGerald, G.A. (1997) 8-Epi PGF Generation During Coronary Reperfusion. A Potential Quantitative Marker of Oxidant Stress in vivo, Circulation 95, 2492–2499.

    Google Scholar 

  62. Quinn, J.F., Montine, K.S., Moore, M., Morrow, J.D., Kaye, J.A., and Montine, T.J. (2004) Suppression of Longitudinal Increase in CSF F2-Isoprostanes in Alzheimer’s Disease, J. Alzheimer’s Dis. 6, 93–97.

    CAS  Google Scholar 

  63. Gniwotta, C., Morrow, J.D., Roberts, L.J., II, and Kühn, H. (1997) Prostaglandin F2-like compounds, F2-Isoprostanes. Are Present in Increased Amounts in Human Atherosclerostic Lesions, Arterioscler. Thromb. Vasc. Biol. 17, 3236–3241.

    PubMed  CAS  Google Scholar 

  64. Morrow, J.D., Frei, B., Longmire, A.W., Gaziano, J.M., Lynch, S.M., Shyr, Y., Strauss, W.E., Oates, J.A., and Roberts, L.J., II. (1995) Increase in Circulating Products of Lipid Peroxidation (F2-isoprostanes) in Smokers. Smoking as a Cause of Oxidative Damage, N. Engl. J. Med. 332, 1198–1203.

    Article  PubMed  CAS  Google Scholar 

  65. Schwedhelm, E., Bartling, A., Lenzen, H., Tsikas, D., Maas, R., Brümmer, J., Gutzki, F.M., Berger, J., Frölich, J.C., and Böger, R.H. (2004) Urinary 8-Iso-Prostaglandin F as a Risk Marker in Patients with Coronary Heart Disease: A matched Case-Control Study, Circulation 109, 843–848.

    Article  PubMed  CAS  Google Scholar 

  66. Gross, M., Steffes, M., Jacobs, D.R., Jr., Yu, X., Lewis, L., Lewis, C.E., and Loria, C.M. (2005) Plasma F2-Isoprostanes and Coronary Artery Calcification: The CARDIA Study, Clin. Chem. 51, 125–131.

    Article  PubMed  CAS  Google Scholar 

  67. Vassalle, C., Petrozzi, L., Botto, N., Andreassi, M.G., and Zucchelli, G.C. (2004) Oxidative Stress and Its Association with Coronary Artery Disease and Different Atherogenic Risk Factors, J. Int. Med. 256, 308–315.

    Article  CAS  Google Scholar 

  68. The Alpha-Tocopherol Beta Carotene Cancer Prevention Study Group. (1994) The Effect of Vitamin E and Beta Carotene on the Incidence of Lung Cancer and Other Cancers in Male Smokers, N. Engl. J. Med. 330, 1029–1035.

    Article  Google Scholar 

  69. Group Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico (1999) Dietary Supplementation with n−3 Polyunsaturated Fatty Acids and Vitamin E After Myocardial Infarction: Results of the GISSI-Prevenzione Trial, Lancet 354, 447–455.

    Article  Google Scholar 

  70. Yusuf, S., Dagenais, G., Pogue, J., Bosch, J., and Sleight, P. (2000) Vitamin E Supplementation and Cardiovascular Events in High-Risk Patients: The Heart Outcomes Prevention Evaluation Study Investigators, New Engl. J. Med. 342, 154–160.

    Article  PubMed  CAS  Google Scholar 

  71. Meagher, E.A., Barry, O.P., Lawson, J.A., Rokach, J., and FitzGerald, G.A. (2001) Effects of Vitamin E on Lipid Peroxidation in Healthy Persons, JAMA 285, 1178–1182.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason D. Morrow.

About this article

Cite this article

Musiek, E.S., Yin, H., Milne, G.L. et al. Recent advances in the biochemistry and clinical relevance of the isoprostane pathway. Lipids 40, 987–994 (2005). https://doi.org/10.1007/s11745-005-1460-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-005-1460-7

Keywords

Navigation