Skip to main content
Log in

Identification and quantification of glycerolipids in cotton fibers: Reconciliation with metabolic pathway predictions from DNA databases

  • Articles
  • Published:
Lipids

Abstract

The lipid profiles of cotton fiber cells were determined from total lipid extracts of elongating and maturing cotton fiber cells to see whether the membrane lipid composition changed during the phases of rapid cell elongation or secondary cell wall thickening. Total FA content was highest or increased during elongation and was lower or decreased thereafter, likely reflecting the assembly of the expanding cell membranes during elongation and the shift to membrane maintenance (and increase in secondary cell wall content) in maturing fibers. Analysis of lipid extracts by electrospray ionization and tandem MS (ESI-MS/MS) revealed that in elongating fiber cells (7–10 d post-anthesis), the polar lipids—PC, PE, PI, PA, phosphatidylglycerol, monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and phosphatidyl-glycerol—were most abundant. These same glycerolipids were found in similar proportions in maturing fiber cells (21 dpa). Detailed molecular species profiles were determined by ESI-MS/MS for all glycerolipid classes, and ESI-MS/MS results were consistent with lipid profiles determined by HPLC and ELSD. The predominant molecular species of PC, PE, PI, and PA was 34∶3 (16∶0, 18∶3), but 36∶6 (18∶3, 18∶3) also was prevalent. Total FA analysis of cotton lipids confirmed that indeed linolenic (18∶3) and palmitic (16∶0) acids were the most abundant FA in these cell types. Bioinformatics data were mined from cotton fiber expressed sequence tag databases in an attempt to reconcile expression of lipid metabolic enzymes with lipid metabolite data. Together, these data form a foundation for future studies of the functional contribution of lipid metabolism to the development of this unusual and economically important cell type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACP:

acyl carrier protein

ASG:

acylated sterol glycoside

CDP:

cytidine diphosphate

CMP:

cytidine monophosphate

DGDG:

digalactosyldiacylglycerol

dpa:

days post-anthesis

ER:

endoplasmic reticulum

ESI:

electrospray ionization

EST:

expressed sequence tag

FAD:

fatty acid desaturase

G3P:

glycerol-3-phosphate

KAS:

ketoacyl ACP synthase

KLRC:

Kansas Lipidomics Research Center

LPA:

lysophosphatidic acid

LPC:

lysoPC

LPE:

lysoPE

LPG:

lysoPG

MGDG:

monogalactosyldiacylglycerol

PA:

phosphatidic acid

PG:

phosphatidylglycerol

PGP:

phosphatidylglycerol phosphate

PLD:

phospholipase D

SG:

sterol glycoside

TC:

tentative consensus. The numerical designation of acyl groups is represented as number of acyl carbons:number of double bonds

References

  1. Lang, A.G. (1938) Origin of Lint and Fuzz Hairs in Cotton, J. Agric. Res. 56, 507–521.

    Google Scholar 

  2. Basra, A.S., and Malik, P. (1984) Development of Cotton Fiber, Int. Rev. Cytol. 89, 65–109.

    Article  CAS  Google Scholar 

  3. Ramsey, J.C., and Berlin, J.D. (1976) Ultrastructural Aspects of Early Stages in Cotton Fiber Elongation, Am. J. Bot. 63, 868–876.

    Article  Google Scholar 

  4. Stewart, J.D. (1975) Fiber Initiation on the Cotton Ovule (Gossypium hirsutum), Am. J. Bot. 62, 723–730.

    Article  Google Scholar 

  5. Schubert, A.M., Benedict, J.D., Berlin, J.D., and Kohel, R.J. (1973) Kinetics of Cell Elongation and Secondary Cell Wall Thickening, Crop Sci. 13, 704–709.

    Article  Google Scholar 

  6. Kim, H.J., and Triplett, B.A. (2001) Cotton Fiber Growth in planta and in vitro. Models for Plant Cell Elongation and Cell Wall Biogenesis, Plant Physiol. 127, 1361–1366.

    Article  PubMed  CAS  Google Scholar 

  7. Somerville, C., Browse, J., Jaworski, J.G., and Ohlrogge, J.B. (2000) Lipids, in Biochemistry & Molecular Biology of Plants (Buchanan, B., Gruissem, W., and Jones, R., eds.), pp. 456–527, American Society of Plant Physiologists, Rockville, MD.

    Google Scholar 

  8. Welti, R., Li, M., Li, W., Sang, Y., Biesiada, H., Zhou H.-E., Rajashekar, C., Williams, T., and Wang, X. (2002) Profiling Membrane Lipids in Plant Stress Response, J. Biol. Chem. 277, 31994–32002.

    Article  PubMed  CAS  Google Scholar 

  9. Christie, W.W. (1992) Detectors for High-Performance Liquid Chromatography of Lipids with Special Reference to Evaporative Light-Scattering Detection, in Advances in Lipid Methodology—One, pp. 239–271, The Oily Press, Ayr, Scotland.

    Google Scholar 

  10. Moreau, R.A., Powell, M.J., and Singh, V. (2003) Pressurized Liquid Extraction of Polar and Nonpolar Lipids in Corn and Oats with Hexane, Methylene Chloride, Isopropanol, and Ethanol, J. Am. Oil Chem. Soc. 80, 1063–1067.

    Article  CAS  Google Scholar 

  11. Peng, L., Kawagoe, Y., Hogan, P., and Delmer, D. (2002) Sitosterol-β-glucoside as a Primer for Cellulose Synthesis in Plants, Science 295, 147–149.

    Article  PubMed  CAS  Google Scholar 

  12. Ji, S.J., Lu, Y.C., Feng, J.X., Wei, G., Li, J., Shi, Y.H., Fu, Q., Liu, D., Luo, J.C., and Zhu, Y.X. (2003) Isolation and Analyses of Genes Preferentially Expressed During Early Cotton Fiber Development by Subtractive PCR and cDNA Array, Nucleic Acids Res. 31, 2534–2543.

    Article  PubMed  CAS  Google Scholar 

  13. Song, P., and Allen, R. (1997) Identification of a Cotton Fiber Specific Acyl Carrier Protein cDNA by Differential Display, Biochim. Biophys. Acta 1351, 305–312.

    PubMed  CAS  Google Scholar 

  14. Orford, S.J., and Timmis, J.N. (2000) Expression of a Lipid Transfer Protein Gene Family During Cotton Fiber Development, Biochim. Biophys. Acta 1483, 275–284.

    PubMed  CAS  Google Scholar 

  15. Orford, S.J., and Timmis, J.N. (1997) Abundant mRNAs Specific to the Developing Cotton Fibre, Theor. Appl. Genet. 94, 909–918.

    Article  CAS  Google Scholar 

  16. Ma, D.P., Tan, H., Si, Y., Creech, R.G., and Jenkins, J.N. (1995) Differential Expression of a Lipid Transfer Protein Gene in Cotton Fiber, Biochim. Biophys. Acta 1257, 81–84.

    PubMed  Google Scholar 

  17. Beisson, F., Koo, A.J., Ruuska, S., Schwender, J., Pollard, M., Thelen, J.J., Paddock, T., Salas, J.J., Savage, L., Milcamps, A., et al. (2003) Arabidopsis Genes Involved in Acyl Lipid Metabolism. A 2003 Census of the Candidates, a Study of$the Distribution of Expressed Sequence Tags in Organs, and a Web-Based Database, Plant Physiol. 132, 681–697.

    Article  PubMed  CAS  Google Scholar 

  18. Chapman, K.D., and Moore, T.S., Jr. (1993) N-Acylphosphatidylethanolamine Synthesis in Plants: Occurrence, Molecular Composition, and Phospholipid Origin, Arch. Biochem. Biophys., 301, 21–33.

    Article  PubMed  CAS  Google Scholar 

  19. Brugger, B., Erben, G., Sandhoff, R., Wieland, F.T., and Lehmann, W.D. (1997) Quantitative Analysis of Biological Membrane Lipids at the Low Picomole Level by Nano-Electrospray Ionization Tandem Mass Spectrometry, Proc. Natl. Acad. Sci. USA 94, 2339–2344.

    Article  PubMed  CAS  Google Scholar 

  20. Kim, Y.H., Choi, J.S., Yoo, J.S., Park, Y.M., and Kim, M.S. (1999) Structural Identification of Glycerolipid Molecular Species Isolated from Cyanobacterium Synechocystis sp. PCC 6803 Using Fast Atom Bombardment Tandem Mass Spectrometry, Anal. Biochem. 267, 260–270.

    Article  PubMed  CAS  Google Scholar 

  21. Welti, R., and Wang, X. (2004) Lipid Species Profiling: A High Throughput Approach to Identify Lipid Compositional Changes and Determine the Function of Genes Involved in Lipid Metabolism and Signaling, Curr. Opin. Plant Biol. 7, 337–344.

    Article  PubMed  CAS  Google Scholar 

  22. Salas, J.J., and Ohlrogge, J.B. (2002) Characterization of Substrate Specificity of Plant FatA and FatB Acyl-ACP Thioesterases, Arch. Biochem. Biophys. 403, 25–34.

    Article  PubMed  CAS  Google Scholar 

  23. Huynh, T.T., Pirtle, P.R., and Chapman, K.D. (2002) Expression of a Gossypium hirsutum cDNA Encoding a FatB Palmitoyl-Acyl Carrier Protein Thioesterase in Eschericia coli, Plant Physiol. Biochem. 40, 1–10.

    Article  CAS  Google Scholar 

  24. Kinney, A. (1993) Phospholipid Head Groups, in Lipid Metabolism in Plants (Moore, T.S., ed.), pp. 259–284, CRC Press, Boca Raton, FL.

    Google Scholar 

  25. Goode, J.H., and Dewey, R.E. (1999) Characterization of Aminoalcoholphosphotransferases from Arabidopsis thaliana and Soybean, Plant Physiol. Biochem. 37, 445–457.

    Article  CAS  Google Scholar 

  26. Joyard, J. (1993) Origin and Synthesis of Galactolipid and Sulfolipid Head Groups, in Lipid Metabolism in Plants (Moore, T.S., ed.), pp. 231–258, CRC Press, Boca Raton, FL.

    Google Scholar 

  27. Kunst, L., and Samuels, A.L. (2003) Biosynthesis and Secretion of Plant Cuticular Wax, Prog. Lipid Res. 42, 51–80.

    Article  PubMed  CAS  Google Scholar 

  28. Lynch, D.V. (1993) Sphingolipids, in Lipid Metabolism in Plants (Moore, T.S., ed.), pp. 285–308, CRC Press, Boca Raton, FL.

    Google Scholar 

  29. Amin, S.A., and Truter, E.V. (1972) Cotton Lipids: A Preliminary Survey, J. Sci. Food Agric. 23, 39–44.

    Article  CAS  Google Scholar 

  30. Chapman, K.D. (1998) Phospholipase Activity During Plant Growth and Development and Development and in Response to Environmental Stress, Trends Plant Sci. 3, 419–426.

    Article  Google Scholar 

  31. Wang, X. (2000) Multiple Isoforms of Phospholipase D in Plants: The Gene Family, Catalytic and Regulatory Properties and Cellular Functions, Prog. Lipid Res. 39, 109–149.

    Article  PubMed  CAS  Google Scholar 

  32. Chapman, K.D. (2004) Occurrence, Metabolism, and Prospective Functions of N-Acylethanolamines in Plants Prog. Lipid Res. 43, 302–327.

    Article  PubMed  CAS  Google Scholar 

  33. Graham, I.A., and Eastmond, P.J. (2002) Pathways of Straight and Branched Chain Fatty Acid Catabolism in Higher Plants, Prog. Lipid Res. 41, 156–181.

    Article  PubMed  CAS  Google Scholar 

  34. Ohlrogge, J.B., Jaworski, J.G., and Post-Beittenmiller, D. (1993) De Novo Fatty Acid Biosynthesis, CRC Press, Boca Raton, FL.

    Google Scholar 

  35. Ohlrogge, J.B., and Browse, J. (1995) Lipid Biosynthesis, Plant Cell 7, 957–970.

    Article  PubMed  CAS  Google Scholar 

  36. Frentzen, M. (1993) Acyltransferases and Triacylglycerols, in Lipid Metabolism in Plants (Moore, T.S., ed.), pp. 195–230, CRC Press, Boca Raton, FL.

    Google Scholar 

  37. Post-Beittenmiller, D. (1996) Biochemistry and Molecular Biology of Wax Production in Plants, Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 405–430.

    Article  PubMed  CAS  Google Scholar 

  38. Moreau, R.A., Powell, M.J., Whitaker, B.D., Bailey, B.A., and Anderson, J.D. (1994) Xylanase Treatment of Plant Cells Induces Glycosylation and Fatty Acylation of Phytosterols, Physiol. Plant. 91, 575–580.

    Article  CAS  Google Scholar 

  39. Moreau, R., Whitaker, B.D., and Hicks, K.B. (2002) Phytosterols, Phytostanols, and Their Conjugates in Foods: Structural Diversity, Quantitative Analysis, and Health-Promoting Uses, Prog. Lipid Res. 41, 457–500.

    Article  PubMed  CAS  Google Scholar 

  40. Dhonukshe, P., Laxalt, A.M., Goedhart, J., Gadella, T.W., and Munnik, T. (2003) Phospholipase D Activation Correlates with Microtubule Reorganization in Living Plant Cells, Plant Cell 15, 2666–2679.

    Article  PubMed  CAS  Google Scholar 

  41. Gardiner, J., Collings, D.A., Harper, J.D., and Marc, J. (2003) The Effects of the Phospholipase D-Antagonist 1-Butanol on Seedling Development and Microtubule Organisation in Arabidopsis, Plant Cell Physiol. 44, 687–696.

    Article  PubMed  CAS  Google Scholar 

  42. Gardiner, J.C., Harper, J.D., Weerakoon, N.D., Collings, D.A., Ritchie, S., Gilroy, S., Cyr, R.J., and Marc, J. (2001) A 90-Kd Phospholipase D from Tobacco Binds to Microtubules and the Plasma Membrane, Plant Cell 13, 2143–2158.

    Article  PubMed  CAS  Google Scholar 

  43. Cockcroft, S. (2001) Signalling Roles of Mammalian Phospholipase D1 and D2, Cell. Mol. Life Sci. 58, 1674–1687.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kent D. Chapman.

About this article

Cite this article

Wanjie, S.W., Welti, R., Moreau, R.A. et al. Identification and quantification of glycerolipids in cotton fibers: Reconciliation with metabolic pathway predictions from DNA databases. Lipids 40, 773–785 (2005). https://doi.org/10.1007/s11745-005-1439-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-005-1439-4

Keywords

Navigation