Skip to main content
Log in

Identification of Δ7 phytosterols and phytosteryl glucosides in the wood and bark of several Acacia speciesphytosterols and phytosteryl glucosides in the wood and bark of several Acacia species

  • Articles
  • Published:
Lipids

Abstract

The wood and bark of four Acacia species growing in Portugal, namely, A. longifolia, A. dealbata, A. melanoxylon, and A. retinodes, were investigated for their sterol content. The lipids fractions of the different wood and bark samples were isolated, and the sterols were identified and quantified by GC-MS. Two Δ7 sterols, specifically, spinasterol and dihydrospinasterol, were the main sterols found in considerable amounts, particularly in wood tissues (more than 0.5 g/kg of dry wood in the case of A. melanoxylon and A. retinodes). The corresponding unusual steryl glucosides were also identified in significant amounts in the wood and bark extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSTFA:

bis(trimethylsilyl)trifluoroacetamide

IS:

internal standard

TMS:

trimethylsilyl

TMSCI:

trimethylchlorosilane

References

  1. Nes, W.R. (1989) Steroids, in Natural Products of Woody Plants II (Rowe, J.W., ed.), pp. 808–842, Springer-Verlag, New York.

    Google Scholar 

  2. Nes, W.R. (1977) The Biochemistry of Plant Sterols, Adv. Lipid Res. 15, 233–324.

    CAS  Google Scholar 

  3. Quílez, J., García-Lorda, P., and Salas-Salvadó, J. (2003) Potential Uses and Benefits of Phytosterols in Diet: Present Situation and Future Direction, Clin. Nutr. 22, 343–351.

    Article  PubMed  CAS  Google Scholar 

  4. Hicks, K.B., and Moreau, R.A. (2001) Phytosterols and Phytostanols: Functional Food Cholesterol Busters, Food Technol. 55, 63–67.

    CAS  Google Scholar 

  5. Marchante, H., Marchante, E., and Freitas, H. (2003) Invasion of the Portuguese Dune Ecosystems by the Exotic Species Acacia longifolia (Andrews) Willd: Effects at the Community Level, in Plant Invasions: Ecological Threats and Management Solutions (Child, L.E., Brock, J.H., Brundu, G., Prach, K., Pysek, P., Wade, P.M., and Williamson, M., eds.), pp. 75–85, Backhuys Publishers, Leiden, The Netherlands.

    Google Scholar 

  6. Seigler, D.S. (2003) Phytochemistry of Acacia—sensu lato, Biochem. Syst. Ecol. 31, 845–873.

    Article  CAS  Google Scholar 

  7. Clark-Lewis, J.W., and Dainis, I. (1967) The Phytosterols from Acacia Species: α-Spinasterol and Stigmast-7-enol, Aust. J. Chem. 20, 1961–1974.

    Article  CAS  Google Scholar 

  8. Mahato, S.B., Pal, B.C., and Price, K.R. (1989) Structure of Acaciaside, a Triterpenoid Trisaccharide from Acacia auriculiformis, Phytochemistry 28, 207–210.

    Article  CAS  Google Scholar 

  9. Pech, G.G., Brito, W.F., Mena, G.J., and Quijano, L. (2002) Constituents of Acacia cedilloi and Acacia gaumeri. Revised Structure and Complete NMR Assignments of Resinone, Z. Natur. C-A-J. Biosci. 57, 773–776.

    CAS  Google Scholar 

  10. Pohjamo, S., Willfor, S., and Holmbom, B. (2004) Wood Resin in Acacia mangium and Acacia crassicarpa Wood and Knots, Appita J., in press.

  11. Freire, C.S.R., Silvestre, A.J.D., and Pascoal Neto, C. (2002) Identification of New Hydroxy Fatty Acids and Ferulic Acid Esters in the Wood of Eucalyptus globulus, Holzforschung 56, 143–149.

    Article  CAS  Google Scholar 

  12. Oliveira, L., Freire, C.S.R., Silvestre, A.J.D., Cordeiro, N., Torres, I., and Evtuguin, D. (2004) Steryl Glucosides from Banana Plant Musa acuminata Colla var. Cavendish, Ind. Crops Prod., in press.

  13. Combaut, G. (1986) GC-MS of Plant Sterols Analysis, in Gas Chromatography/Mass Spectrometry (Linskens, H.F., and Jackson, J.F., eds.), pp. 121–133, Springer-Verlag, Berlin.

    Google Scholar 

  14. Rahier, A., and Benveniste, P. (1989) Mass Spectral Identification of Phytosterols, in Analysis of Sterols and Other Biologically Significant Steroids (Nes, W.D., and Parish, E.J., eds.), pp. 223–250, Academic Press, San Diego.

    Google Scholar 

  15. Moreau, A.M., Powell, M.J., and Singh, V. (2003) Pressurized Liquid Extraction of Polar and Nonpolar Lipids in Corn and Oats with Hexane, Methylene Chloride, Isopropanol, and Ethanol, J. Am. Oil Chem. Soc. 80, 1063–1067.

    Article  CAS  Google Scholar 

  16. Freire, C.S.R., Silvestre, A.J.D., Pascoal Neto, C., Domingues, P., and Silva, A.M.S. (2004) New Glucosides in the Wood and Bark of Eucalyptus globulus and Kraft Pulps, Holzforschung 58, 501–503.

    Article  CAS  Google Scholar 

  17. Gafur, M.A., Obata, T., Kiuchi, F., and Tsuda, Y. (1997) Acacia concinna Saponins. I. Structures of Prosapogenols Concinnosides A-F, Isolated from the Alkaline Hydrolysate of the Highly Polar Saponin Fraction, Chem. Pharm. Bull. 45, 620–625.

    Google Scholar 

  18. Duke, J.A. (1992) Handbook of Phytochemical Constituents of GRAS Herbs and Other Economic Plants, CRC Press, Boca Raton, FL.

    Google Scholar 

  19. Grunwald, C., and Huang, L.-S. (1989) Analysis of Steryl Glycosides, in Analysis of Sterols and Other Biologically Significant Steroids (Nes, W.D., and Parish, E.J., eds.), pp. 49–60, Academic Press, San Diego.

    Google Scholar 

  20. Gutiérrez, A., and del Río, J.C. (2001) Gas Chromatography/ Mass Spectrometry Demonstration of Steryl Glycosides in Eucalypt Wood, Kraft Pulp and Process Liquids, Rapid Commun. Mass Spectrom. 15, 2515–2520.

    Article  PubMed  CAS  Google Scholar 

  21. Serreqi, A.N., Leone, R., del Rio, L.F., Mei, S., Fernandez, M., and Breuil, C. (2000) Identification and Quantification of Important Steryl Esters in Aspen Wood, J. Am. Oil Chem. Soc. 77, 413–418.

    Article  CAS  Google Scholar 

  22. Uchida, K., Mizuno, H., Hirota, K., Takeda, K., Takeuchi, N., and Ishikawa, Y. (1983) Effects of Spinasterol and Sitosterol on Plasma and Liver Cholesterol Levels and Biliary and Fecal Sterol and Bile-Acid Excretions in Mice, Jpn. J. Pharmacol. 33, 103–112.

    PubMed  CAS  Google Scholar 

  23. Villasenor, I.M., and Domingo, A.P. (2000) Anticarcinogenicity Potential of Spinasterol Isolated from Squash Flowers, Teratog. Carcinog. Mutagen. 20, 99–105.

    Article  PubMed  CAS  Google Scholar 

  24. Jeong, S.I., Kim, K.J., Choi, M.K., Keum, K.S., Lee, S., Ahn, S.H., Back, S.H., Song, J.H., Ju, Y.S., Choi, B.K., and Jung, K.Y. (2004) α-Spinasterol Isolated from the Root of Phytolacca americana and Its Pharmacological Property on Diabetic Nephropathy, Planta Med. 70, 736–739.

    Article  PubMed  CAS  Google Scholar 

  25. Iwatsuki, K., Akihisa, T., Tokuda, H., Ukiya, M., Higashihara, H., Mukainaka, T., Iizuka, M., Hayashi, Y., Kimura, Y., and Nishino, H. (2003) Sterol Ferulates, Sterols, and 5-Alk(en)ylresorcinols from Wheat, Rye, and Corn Bran and Their Inhibitory Effects on Epstein-Barr Virus Activation, J. Agric. Food Chem. 51, 6683–6688.

    Article  PubMed  CAS  Google Scholar 

  26. Arisawa, M., Kinghorn, A.D., Cordell, G.A., Phoebe, C.H., and Fansworth, N.R. (1985) Plant Anticancer Agents. XXXVI. Schottenol Glucoside from Baccharis coridifolia and Ipomopsis aggregata, Planta Med. 6, 544–545.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando J. D. Silvestre.

About this article

Cite this article

Freire, C.S.R., Coelho, D.S.C., Santos, N.M. et al. Identification of Δ7 phytosterols and phytosteryl glucosides in the wood and bark of several Acacia speciesphytosterols and phytosteryl glucosides in the wood and bark of several Acacia species. Lipids 40, 317–322 (2005). https://doi.org/10.1007/s11745-005-1388-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-005-1388-y

Keywords

Navigation