Skip to main content
Log in

The reductase steps of the type II fatty acid synthase as antimicrobial targets

  • Published:
Lipids

Abstract

The increasing of multidrug resistance of clinically important pathogens calls for the development of novel antibiotics with unexploited cellular targets. FA biosynthesis in bacteria is catalyzed by a group of highly conserved proteins known as the type II FA synthase (FAS II) system. Bacteria FAS II organization is distinct from its mammalian counterpart; thus the FAS II pathway offers several unique steps for selective inhibition by antibacterial agents. Some known antibiotics that target the FAS II system include triclosan, isoniazid, and thiolactomycin. Recent years have seen remarkable progress in the understanding of the genetics, biochemistry, and regulation of the FAS II system with the availability of the complete geome, sequence for many bacteria. Crystal structures of the FAS II pathway enzymes have been determined for not only the Escherichia coli model system but also other gram-netative and gram-positive pathogens. The protein structures have greatly facilitated structure-based design of novel inhibitors and the improvement of existing antibacterial agents. This review discusses new developments in the discovery of inhibitors that specifically target the two reductase steps of the FAS II system, β-ketoacyl-acyl carrier potein (ACP) reductase and enoyl-ACP reductase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACP:

acyl carrier protein

EGCG:

epigallocatechin gallate

FabG:

β-ketoacyl-ACP reductase

FabI:

enoyl-ACP reductase I

FabK:

enoyl-ACP reductase II

FabL:

enoyl-ACP reductase III

FAS I:

type I fatty acid synthase

FAS II:

type II fatty acid synthase

INH:

isoniazid acid hydrazide

SAR:

structure-activity relationship

Is:

temperature sensitive

References

  1. Cronan, J.E., Jr., and Rock, C.O. (1996) Biosynthesis of Membrane Lipids, in Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (Neidhardt, F.C., Curtis, R., Gross, C.A., Ingraham, J.L., Lin, E.C.C., Low, K.B., Magasanik, B., Reznikoff, W., Riley, M., Schaechter, M., and Umbarger, H.E., eds.), pp. 612–636, American Society for Microbiology, Washington, D.C..

    Google Scholar 

  2. Rock, C.O., and Cronan, J.E., Jr. (1996) Escherichia coli as a Model for the Regulation of Dissociable (Type II) FA Biosynthesis, Biochim. Biophys. Acta 1302, 1–16.

    PubMed  Google Scholar 

  3. Rock, C.O., and Jackowski, S. (2002) Forty Years of FA Biosynthesis, Biochem. Biophys. Res. Commun. 292, 1155–1166.

    Article  PubMed  CAS  Google Scholar 

  4. Heath, R.J., and Rock, C.O. (2004) FA Biosynthesis as a Target for Novel Antibacterials, Curr. Opin. Investig. Drugs 5, 146–153.

    PubMed  CAS  Google Scholar 

  5. Heath, R.J., White, S.W., and Rock, C.O. (2001) Lipid Biosynthesis as a Target for Antibacterial Agents, Prog. Lipid Res. 40, 467–497.

    Article  PubMed  CAS  Google Scholar 

  6. Campbell, J.W., and Cronan, J.E., Jr. (2001) Bacterial FA Biosynthesis: Targets for Antibacterial Drug Discovery, Annu. Rev. Microbiol. 55, 305–332.

    Article  PubMed  CAS  Google Scholar 

  7. McMurray, L.M., Oethinger, M., and Levy, S. (1998) Triclosan Targets Lipid Synthesis, Nature (London) 394, 531–532.

    Article  Google Scholar 

  8. Heath, R.J., Yu, Y.-T., Shapiro, M.A., Olson, E., and Rock, C.O. (1998) Broad Spectrum Antimicrobial Biocides Target the FabI Component of FA Synthesis, J. Biol. Chem. 273, 30316–30321.

    Article  PubMed  CAS  Google Scholar 

  9. Banerjee, A., Dubnau, E., Quémard, A., Balasubramanian, V., Um, K.S., Wilson, T., Collins, D., de Lisle, G., and Jacobs, W.R., Jr. (1994) inhA, a Gene Encoding a Target for Isoniazid and Ethionamide in Mycobacterium tuberculosis, Science 263, 227–230.

    Article  PubMed  CAS  Google Scholar 

  10. Hayashi, T., Yamamoto, O., Sasaki, H., and Okazaki, H. (1984) Inhibition of FA Synthesis by the Antibiotic Thiolactomycin, J. Antibiot. (Tokyo) 37, 1456–1461.

    CAS  Google Scholar 

  11. Foth, B.J., Ralph, S.A., Tonkin, C.J., Struck, N.S., Fraunholz, M., Roos, D.S., Cowman, A.F., and McFadden, G.I. (2003) Dissecting Apicoplast Targeting in the Malaria Parasite Plasmodium falciparum, Science 299, 705–708.

    Article  PubMed  CAS  Google Scholar 

  12. Waller, R.F., Ralph, S.A., Reed, M.B., Su, V., Douglas, J.D., Minnikin, D.E., Cowman, A.F., Besra, G.S., and McFadden, G.I. (2003) A Type II Pathway for FA Biosynthesis Presents Drug Targets in Plasmodium falciparum, Antimicrob. Agents Chemother. 47, 297–301.

    Article  PubMed  CAS  Google Scholar 

  13. Surolia, N., and Surolia, A. (2001) Triclosan Offers Protection Against Blood Stages of Malaria by Inhibiting Enoyl-ACP Reductase of Plasmodium falciparum, Nat. Med. 7, 167–173.

    Article  PubMed  CAS  Google Scholar 

  14. Heath, R.J., Rubin, J.R., Holland, D.R., Zhang, E., Snow, M.E., and Rock, C.O. (1999) Mechanism of Triclosan Inhibition of Bacterial FA Synthesis, J. Biol. Chem. 274, 11110–11114.

    Article  PubMed  CAS  Google Scholar 

  15. Heath, R.J., and Rock, C.O. (1995) Enoyl-acyl Carrier Protein Reductase (fabI) Plays a Determinant Role in Completing Cycles of FA Elongation in Escherichia coli, J. Biol. Chem. 270, 26538–26542.

    Article  PubMed  CAS  Google Scholar 

  16. Turnowsky, F., Fuchs, K., Jeschek, C., and Högenauer, G. (1989) envM Genes of Salmonella typhimurium and Escherichia coli, J. Bacteriol. 171, 6555–6565.

    PubMed  CAS  Google Scholar 

  17. Heath, R.J., Li, J., Roland, G.E., and Rock, C.O. (2000) Inhibition of the Staphylococcus aureus NADPH-Dependent Enoylacyl Carrier Protein Reductase by Triclosan and Hexachlorophene, J. Biol. Chem. 275, 4654–4659.

    Article  PubMed  CAS  Google Scholar 

  18. Heath, R.J., and Rock, C.O. (2000) A Triclosan-Resistant Bacterial Enzyme, Nature (London) 406, 145–146.

    Article  CAS  Google Scholar 

  19. Marrakchi, H., DeWolf, W.E., Jr., Quinn, C., West, J., Polizzi, B.J., So, C.Y., Holmes, D.J., Reed, S.L., Health, R.J., Payne, D.J., et al. (2003) Characterization of Streptococcus pneumoniae Enoyl-[Acyl Carrier Protein] Reductase (FabK), Biochem. J. 370, 1055–1062.

    Article  PubMed  CAS  Google Scholar 

  20. Heath, R.J., Su, N., Murphy, C.K., and Rock, C.O. (2000) The Enoyl-[Acyl-Carrier-Protein] Reductases FabI and FabL from Bacillus subtilis, J. Biol. Chem. 275, 40128–40133.

    Article  PubMed  CAS  Google Scholar 

  21. Dessen, A., Quémard, A., Blanchard, J.S., Jacobs, W.r., Jr., and Sacchettini, J.C. (1995) Crystal Structure and Function of the Isoniazid Target of Mycobacterium tuberculosis, Science 267, 1638–1641.

    Article  PubMed  CAS  Google Scholar 

  22. Kuo, M.R., Morbidoni, H.R., Alland, D., Sneddon, S.F., Gourlie, B.B., Staveski, M.M., Leonard M., Gregory, J.S., Janjigian, A.D., Yee, C., et al. (2003) Targeting Tuberculosis and Malaria Through Inhibition of Enoyl Reductase: Compound Activity and Structural Data, J. Biol. Chem. 278, 20851–20859.

    Article  PubMed  CAS  Google Scholar 

  23. Stewart, M.J., Parikh, S., Xiao, G., Tonge, P.J., and Kisker, C. (1999) Structural Basis and Mechanism of Enoyl Reductase Inhibition by Triclosan, J. Mol. Biol. 290, 859–865.

    Article  PubMed  CAS  Google Scholar 

  24. Fan, F., Yan, K., Wallis, N.G., Reed, S., Moore, T.D., Rittenhouse, S.F., DeWolf, J.W., Jr., Huang, J., McDevitt, D., Miller, W.H., et al. (2002) Defining and Combating the Mechanisms of Triclosan Resistance in Clinical Isolates of Staphylococcus aureus, Antimicrob. Agents Chemother. 46, 3343–3347.

    Article  PubMed  CAS  Google Scholar 

  25. Sivaraman, S., Zwahlen, J., Bell, A.F., Hedstrom, L., and Tonge, P.J. (2003) Structure-Activity Studies of the Inhibition of FabI, the Enoyl Reductase from Escherichia coli, by Triclosan: Kinetic Analysis of Mutant FabIs, Biochemistry 42, 4406–4413.

    Article  PubMed  CAS  Google Scholar 

  26. Rawat, R., Whitty, A., and Tonge, P.J. (2003) The Isoniazid-NAD NAD Adduct Is a Slow, Tight-Binding Inhibitor of InhA, the Mycobacterium tuberculosis Enoyl Reductase: Adduct Affinity and Drug Resistance, Proc. Natl. Acad. Sci. USA 100, 13881–13886.

    Article  PubMed  CAS  Google Scholar 

  27. McMurry, L.M., McDermott, P.F., and Levy, S.B. (1999) Genetic Evidence that InhA of Mycobacterium smegmatis Is a Target for Triclosan, Antimicrob. Agents Chemother. 43, 711–713.

    Article  PubMed  CAS  Google Scholar 

  28. Perozzo, R., Kuo, M., Sidhu, A.S., Valiyaveettil, J.T., Bittman, R., Jacobs, W.R., Jr., Fidock, D.A., and Sacchettini, J.C. (2002) Structural Elucidation of the Specificity of the Antibacterial Agent Triclosan for Malarial Enoyl Acyl Carrier Protein Reductase, J. Biol. Chem. 277, 13106–13114.

    Article  PubMed  CAS  Google Scholar 

  29. Kapoor, M., Dar, M.J., Surolia, A., and Surolia, N. (2001) Kinetic Determinants of the Interaction of Enoyl-ACP Reductase from Plasmodium falciparum with Its Substrates and Inhibitors, Biochem. Biophys. Res. Commun. 289, 832–837.

    Article  PubMed  CAS  Google Scholar 

  30. Sivaraman, S., Sullivan, T.J., Johnson, F., Novichenok, P., Cui, G., Simmerling, C., and Tonge, P.J. (2004) Inhibition of the Bacterial Enoyl Reductase FabI by Triclosan: A Structure-Reactivity Analysis of FabI Inhibition by Triclosan Analogues, J. Med. Chem. 47, 509–518.

    Article  PubMed  CAS  Google Scholar 

  31. Heerding, D.A., Chan, G., DeWolf, W.E., Fosberry, A.P., Janson, C.A., Jaworski, D.D., McManus, E., Miller, W.H., Moore, T.D., Payne, D.J., et al. (2001) 1,4-Disubstituted Imidazoles Are Potential Antibacterial Agents Functioning as Inhibitors of Enoyl Acyl Carrier Protein Reductase (FabI), Bioorg. Med. Chem. Lett. 11, 2061–2065.

    Article  PubMed  CAS  Google Scholar 

  32. Seefeld, M.A., Miller, W.H., Newlander K.A., Burgess, W.J., Payne, D.J., Rittenhouse, S.F., Moore, T.D., DeWolf, W.E., Jr., Keller, P.M., Qiu, X., et al. (2001) Inhibitors of Bacterial Enoyl Acyl Carrier Protein Reductase (FabI): 2,9-Disubstituted 1,2,3,4-Tetrahydropyrido[3,4-b]indoles as Potential Antibacterial Agents, Bioorg. Med. Chem. Lett. 11, 2241–2244.

    Article  PubMed  CAS  Google Scholar 

  33. Payne, D.J., Miller, W.H., Berry, V., Brosky, J., Burgess, W.J., Chen, E., DeWolf, J.W., Jr., Fosberry, A.P., Greenwood, R., Head, M.S., et al. (2002) Discovery of a Novel and Potent Class of FabI-Directed Antibacterial Agents, Antimicrob. Agents Chemother. 46, 3118–3124.

    Article  PubMed  CAS  Google Scholar 

  34. Miller, W.H., Seefeld, M.A., Newlander, K.A., Uzinskas, I.N., Burgess, W.J., Heerding, D.A., Yuan, C.C., Head, M.S., Payne, D.J., Rittenhouse, S.F., et al. (2002) Discovery of Aminopyridine-Based Inhibitors of Bacterial Enoyl-ACP Reductase (FabI), J. Med. Chem. 45, 3246–3256.

    Article  PubMed  CAS  Google Scholar 

  35. Seefeld, M.A., Miller, W.H., Newlander, K.A., Burgess, W.J., DeWolf, W.E., Jr., Elkins, P.A., Head, M.S., Jakas, D.R., Janson, C.A., Keller, P.M., et al. (2003) Indole Naphthyridinones as Inhibitors of Bacterial Enoyl-ACP Reductases FabI and FabK, J. Med. Chem. 46, 1627–1635.

    Article  PubMed  CAS  Google Scholar 

  36. Sheldon, P.S., Kekwick, R.G., Smith, C.G., Sidebottom, C., and Slabas, A.R. (1992) 3-Oxoacyl-[ACP] Reductase from Oilseed Rape (Brassica napus), Biochim. Biophys. Acta 1120, 151–159.

    Article  PubMed  CAS  Google Scholar 

  37. Fawcett, T., Copse, C.L., Simon, J.W., and Slabas, A.R. (2000) Kinetic Mechanism of NADH-Enoyl-ACP Reductase from Brassica napus, FEBS Lett. 484, 65–68.

    Article  PubMed  CAS  Google Scholar 

  38. Price, A.C., Zhang, Y.-M., Rock, C.O., and White, S.W. (2001) The Structure of β-Ketoacyl-[Acyl Carrier Protein] Reductase from Escherichia coli: Negative Cooperativity and Its Structural Basis, Biochemistry 40, 12772–12781.

    Article  PubMed  CAS  Google Scholar 

  39. Price, A.C., Zhang, Y.-M., Rock, C.O., and White, S.W. (2004) Cofactor-Induced Conformational Rearrangements Establish a Catalytically Competent Active Site and a Proton Relay Conduit in β-Ketoacyl-Acyl Carrier Protein Reductase (FabG), Structure 12, 417–428.

    Article  PubMed  CAS  Google Scholar 

  40. Cohen-Gonsaud, M., Ducasse, S., Hoh, F., Zerbib, D., Labesse, G., and Quemard, A. (2002) Crystal Structure of MabA from Mycobacterium tuberculosis, a Reductase Involved in Long-Chain FA Biosynthesis, J. Mol. Biol. 320, 249–261.

    Article  PubMed  CAS  Google Scholar 

  41. Zhang, Y., and Cronan, J.E., Jr. (1996) Polar Allele Duplication for Transcriptional Analysis of Consecutive Essential Genes: Application to a Cluster of Escherichia coli FA Biosynthetic Genes, J. Bacteriol. 178, 3614–3620.

    PubMed  CAS  Google Scholar 

  42. Lai, C.Y., and Cronan, J.E., Jr. (2004) Isolation and Characterization of β-Ketoacyl-Acyl Carrier Protein Reductase (fabG) Mutants of Escherichia coli and Salmonella enterica Serovar Typhimurium, J. Bacteriol. 186, 1869–1878.

    Article  PubMed  CAS  Google Scholar 

  43. Zhang, Y.-M., and Rock, C.O. (2004) Evaluation of Epigallocatechin Gallate and Related Plant Polyphenols as Inhibitors of the FabG and FabI Reductases of Bacterial Type IIFA Synthase, J. Biol. Chem. 279, 30994–31001.

    Article  PubMed  CAS  Google Scholar 

  44. Ducasse-Cabanot, S., Cohen-Gonsaud, M., Marrakchi, H., Nguyen, M., Zerbib, D., Bernadou, J., Daffe, M., Labesse, G., and Quemard, A. (2004) In vitro Inhibition of the Mycobacterium tuberculosis β-Ketoacyl-Acyl Carrier Protein Reductase MabA by Isoniazid, Antimicrobiol. Agents Chem. 48, 242–249.

    Article  CAS  Google Scholar 

  45. Lei, B., Wei, C.J., and Tu, S.C. (2000) Action Mechanism of Antitubercular Isoniazid. Activation by Mycobacterium tuberculosis KatG, Isolation and Characterization of InhA Inhibitor, J. Biol. Chem. 275, 2520–2526.

    Article  PubMed  CAS  Google Scholar 

  46. Rozwarski, D., Grant, G., Barton, D., Jacobs, W., and Sacchettini, J.C. (1998) Modification of NADH of the Isoniazid Target (InhA) from Mycobacterium tuberculosis, Science 279, 98–102.

    Article  PubMed  CAS  Google Scholar 

  47. Banerjee, A., Sugantino, M., Sacchettini, J.C., and Jacobs, W.R., Jr. (1998) The mabA Gene from the inhA Operon of Mycobacterium tuberculosis Encodes a 3-Ketoacyl Reductase That Fails to Confer Isoniazid Resistance, Microbiology 144, 2697–2704.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles O. Rock.

About this article

Cite this article

Zhang, YM., Lu, YJ. & Rock, C.O. The reductase steps of the type II fatty acid synthase as antimicrobial targets. Lipids 39, 1055–1060 (2004). https://doi.org/10.1007/s11745-004-1330-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-004-1330-3

Keywords

Navigation