Skip to main content
Log in

Dietary fish oil dose- and time-response effects on cardiac phospholipid fatty acid composition

  • Articles
  • Published:
Lipids

Abstract

Fish consumption is associated with reduced cardiovascular mortality, and elevated myocardial long-chain n−3 polyunsaturated FA (PUFA) content is implicated in this cardioprotection. This study examined the dose and time responses for incorporation of n−3 PUFA into cellular membranes in rats fed fish oil (FO)-containing diets. For the time course study, rats were fed a 10% FO diet for periods ranging from 0 to 42 d, after which myocardial and erythrocyte membrane fatty acid composition was determined. For the dose response study, rats (n=3) were fed 0, 1.25, 2.5, 5, or 10% FO for 4 wk, with myocardial, erythrocyte, and skeletal muscle membrane FA determined. Myocardial DHA (22∶6n−3) levels doubled in 2 d, stabilizing at levels ≈200% higher than control after 28 d feeding with 10% FO. By comparison, DHA levels doubled after 4 wk of 1.25% FO feeding. In myocardium and skeletal muscle, EPA (20∶5n−3) levels remained low, but in erythrocytes EPA levels reached 50% of DHA levels. The n−3 PUFA were incorporated at the expense of n−6 PUFA in myocardium and skeletal muscle, whereas erythrocytes maintained arachidonic acid levels, and total n−3 PUFA incorporation was lower. This study shows that low doses of FO produce marked changes in myocardial DHA levels; maximal incorporation takes up to 28 d to occur; and while erythrocytes are a good indicator of tissue n−3 incorporation in stable diets, they vary greatly in their time course and pattern of incorporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EPA:

eicosapentaenoic acid

DHA:

docosahexaenoic acid

FO:

fish oil

i.p.:

intraperitoneal

OO:

olive oil

PUFA:

polyunsaturated fatty acid(s)

References

  1. Dyerberg J. and Bang H. O. (1982) A hypothesis on the development of acute myocardial infarction in Greenlanders. Scand. J. Clin. Lab. Invest. Suppl. 161, 7–13.

    Article  PubMed  CAS  Google Scholar 

  2. Oomen C. M., Feskens E. J., Rasanen L., Fidanza F., Nissinen A. M., Menotti A., Kok F. J. and Kromhout D. (2000) Fish consumption and coronary heart disease mortality in Finland, Italy, and The Netherlands. Am. J. Epidemiol. 151, 999–1006.

    PubMed  CAS  Google Scholar 

  3. Albert C. M., Campos H., Stampfer M. J., Ridker P. M., Manson J. E., Willett W. C., and Ma J. (2002) Blood levels of long-chain n−3 FA and the risk of sudden death. N. Eng. J. Med. 346, 1113–1118.

    Article  CAS  Google Scholar 

  4. GISSI-Prevenzione Investigators (1999) Dietary supplementation with n−3 polyunsaturated FA and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Lancet. 354, 447–455.

    Article  Google Scholar 

  5. Charnock, J. S., Abeywardena, M. Y., and McLennan P. L. (1986) Comparative changes in the fatty-acid composition of rat cardiac phospholipids after long-term feeding of sunflower seed oil-or tuna fish oil-supplemented diets. Ann. Nutr. Metab. 30, 393–406.

    Article  PubMed  CAS  Google Scholar 

  6. McLennan P. L., Abeywardena, M. Y., and Charnock J. S. (1988) Dietary fish oil prevents ventricular fibrillation following coronary artery occlusion and reperfusion. Am. Heart. J. 116, 709–717.

    Article  PubMed  CAS  Google Scholar 

  7. Nair S. S., Leitch, J. W., Falconer J., and Garg M. L. (1997) Prevention of cardiac arrhythmia by dietary (n−3) polyunsaturated fatty acids and their mechanism of action. J. Nutr. 127, 383–393.

    PubMed  CAS  Google Scholar 

  8. Pepe S. and McLennan P. L. (1996) Dietary fish oil confers direct antiarrhythmic properties on the myocardium of rats. J. Nutr. 126, 34–42.

    PubMed  CAS  Google Scholar 

  9. Pepe S. and McLennan P. L. (2002) Cardiac membrane fatty acid composition modulates myocardial oxygen consumption and postischemic recovery of contractile function. Circulation 105, 2303–2308.

    Article  PubMed  CAS  Google Scholar 

  10. Saito M., Ueno M., Kubo K., and Yamaguchi M. (1998) Dose-Response Effect of Dietary Docosahexaenoic Acid on Fatty Acid Profiles of Serum and Tissue Lipids in Rats. J. Agric. Food Chem. 46, 184–193.

    Article  PubMed  CAS  Google Scholar 

  11. Folch J., Lees M., and Sloane Stanley G. H. (1957) A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  12. Steck T. L. and Kant J. A. (1974) Preparation of impermeable ghosts and inside-out vesicles from human erythrocyte membranes. Methods. Enzymol. 31, 172–180.

    PubMed  CAS  Google Scholar 

  13. Atkinson T. G., Barker H. J., and Meckling-Gill K. A. (1997) Incorporation of long-chain n−3 fatty acids in tissues and enhanced bone marrow cellularity with docosahexaenoic acid feeding in post-weanling Fischer 344 rats. Lipids 32, 293–302.

    Article  PubMed  CAS  Google Scholar 

  14. Gudbjarnason S., Benediktsdottir V. E., and Skuladottir G. (1989) Effects of n−3 polyunsaturated fatty acids on coronary heart disease. Bibl. Nutr. Dieta., 1–12.

  15. Calviello G., Palozza P., Franceschelli P., and Bartoli G. M. (1997) Low-dose eicosapentaenoic or docosahexaenoic acid administration modifies fatty acid composition and does not affect susceptibility to oxidative stress in rat erythrocytes and tissues. Lipids 32, 1075–1083.

    Article  PubMed  CAS  Google Scholar 

  16. Brown, A. P., Dinger, N., and Levine B. S. (2000) Stress produced by gavage administration in the rat. Contemp. Top. Lab. Anim. Sci. 39, 17–21.

    PubMed  CAS  Google Scholar 

  17. Harris W. S., and Von Schacky C. (2004) The Omega-3 Index: a new risk factor for death from coronary heart disease? Prev. Med. 39, 212–220.

    Article  PubMed  CAS  Google Scholar 

  18. Derelanko, M. J. (1987) Determination of erythrocyte life span in F-344, Wistar, and Sprague-Dawley rats using a modification of the [3 H]diisopropylfluorophosphate ([3 H]DFP) method. Fundam. Appl. Toxicol. 9, 271–276.

    Article  PubMed  CAS  Google Scholar 

  19. von Schacky C. and Weber P. C. (1985) Metabolism and effects on platelet function of purified eicosapentaenoic and docosahexaenoic acids in humans. J. Clin. Invest. 76, 2446–2450.

    Article  Google Scholar 

  20. Charnock J. S., Abeywardena M. Y., Poletti V. M., and McLennan P. L. (1992) Differences in fatty acid composition of various tissues of the marmoset monkey (Callithrix jacchus) after different lipid supplemented diets. Comp. Biochem. Physiol. Comp. Physiol. 101, 387–393.

    Article  PubMed  CAS  Google Scholar 

  21. Sexton P. T., Sinclair A. J., O'Dea K., Sanigorski A. J., and Walsh J. (1995) The relationship between linoleic acid level in serum, adipose tissue and myocardium in humans. Asia Pacific J. Clin. Nutr. 4, 314–318.

    Google Scholar 

  22. Harris W. S., Sands S. A., Windsor S. L., Ali H. A., Stevens T. L., Magalski A., Porter C. B., and Borkon A. M. (2004) Omega-3 fatty acids in cardiac biopsies from heart transplantation patients: correlation with erythrocytes and response to supplementation. Circulation 110, 1645–1649.

    Article  PubMed  CAS  Google Scholar 

  23. Tavazzi L., Tognoni G., Franzosi M. G., Latini R., Maggioni A. P., Marchioli R., Nicolosi G. L., and Porcu M. (2004) Rationale and design of the GISSI heart failure trial: a large trial to assess the effects of n−3 polyunsaturated fatty acids and rosuvastatin in symptomatic congestive heart failure. Eur. J. Heart Fail. 6, 635–641.

    PubMed  CAS  Google Scholar 

  24. Storlien L. H., Pan D. A., Kriketos A. D., O'Connor J., Caterson I. D., Cooney G. J., Jenkins A. B., and Baur L. A. (1996) Skeletal muscle membrane lipids and insulin resistance. Lipids 31 Suppl., S261-S265.

    PubMed  CAS  Google Scholar 

  25. Di Marino L., Maffettone A., Cipriano P., Sacco M., Di Palma R., Amato B., Quarto G., Riccardi G., and Rivellese A. A. (2000) Is the erythrocyte membrane fatty acid composition a valid index of skeletal muscle membrane fatty acid composition? Metabolism 49, 1164–1166.

    Article  PubMed  Google Scholar 

  26. Okano G., Matsuzaka H., and Shimojo T. (1980) A comparative study of the lipid composition of white, intermediate, red and heart muscle in rats. Biochim. Biophys. Acta 619, 167–175.

    PubMed  CAS  Google Scholar 

  27. Wu B. J., Hulbert A. J., Storlien L. H., and Else P. L. (2004) Membrane lipids and sodium pumps of cattle and crocodiles: an experimental test of the membrane pacemaker theory of metabolism. Am. J. Physiol. 287, R633-R641.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter L. McLennan.

About this article

Cite this article

Owen, A.J., Peter-Przyborowska, B.A., Hoy, A.J. et al. Dietary fish oil dose- and time-response effects on cardiac phospholipid fatty acid composition. Lipids 39, 955–961 (2004). https://doi.org/10.1007/s11745-004-1317-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-004-1317-0

Keywords

Navigation