Skip to main content
Log in

The age-related decline in intestinal lipid uptake is associated with a reduced abundance of fatty acid-binding protein

  • Articles
  • Published:
Lipids

Abstract

Aging is associated with changes in the absorptive capacity of the small intestine. We tested the hypotheses that (i) aging is associated with a decline in lipid absorption, and that (ii) this decreased lipid absorption is due to a decline in the abundance of mRNA and/or the enterocyte cytosolic intestinal FA-binding protein (I-FABP), the liver FA-binding protein (L-FABP), and the ileal lipid-binding protein (ILBP). In vitro uptake studies were performed on Fischer 344 rats at ages 1, 9, and 24 mon. Northern blotting (L-FABP, ILBP) and immunohistochemistry (I-FABP, ILBP) were performed. Aging was associated with decreased animal weights, but the surface area of the intestine was not significantly altered with age. The rates of ileal uptake of 16∶0, 18∶0, 18∶1, and 18∶2 were reduced by greater than 50% with aging when expressed on the basis of mucosal weight. This decline was not associated with reduced expression of mRNA for L-FABP or ILBP but was associated with a 50% decrease in the abundance of I-FABP and a 40% decrease in the abundance of ILBP. Thus, the decrease with aging in the ileal uptake of some FA when rates were expressed on the basis of mucosal weight was associated with a reduced abundance of I-FABP and ILBP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BBM:

brush border membrane

F344 rats:

Fischer 344 rats

ILBP:

ileal lipid-binding protein

FAT:

FA translocase

I-FABP:

intestinal FA-binding protein

LCFA:

long-chain FA

L-FABP:

liver FA-binding protein

UWL:

effective resistance of the intestinal unstirred water layer

References

  1. Health Canada (2002) Canada's Aging Population, Division of Aging and Seniors, Health Canada, Ottawa, Ontario, Canada, http://www.hc-sc.gc.ca/seniors-aines/_pubs/fed_paper/pdfs/fedpager_e.pdf|url (accessed June 2004).

    Google Scholar 

  2. Halter, J.B. (1999) Diabetes Mellitus, in Principles of Geriatric Medicine and Gerontology (Hazzard, W.M., Blass, J.P., Ettinger, W.H., Jr., Halter, J.B., and Ouslander, J.G., eds.), pp. 991–1011, McGraw-Hill, New York.

    Google Scholar 

  3. Morley, J.E. (1999) An Overview of Diabetes Mellitus in Older Persons, Clin. Geriatr. Med. 15, 211–223.

    PubMed  CAS  Google Scholar 

  4. Ferraris, R.P., and Vinnekota, R.R. (1993) Regulation of Intestinal Nutrient Transport Is Impaired in Aged Mice, J. Nutr. 123, 502–511.

    PubMed  CAS  Google Scholar 

  5. Chen, T.S., Currier, G.J., and Wabner, C.L. (1990) Intestinal Transport During the Life Span of the Mouse, J. Gerontol. 45(4), B129–133.

    PubMed  CAS  Google Scholar 

  6. Morris, H.A., Nordin, B.E.C., Fraser, V., Hartley, T.F., Need, A.G., and Horowitz, M. (1985) Calcium Absorption and Serum 1,25-Dihydroxy Vitamin D Levels in Normal and Osteoporotic Women, Gastroenterology 88(5) A1508.

    Google Scholar 

  7. Thomson, A.B.R. (1980) Effect of Age on a Homologous Series of Saturated Fatty Acids into Rabbit Jejunum, Am. J. Physiol. 239, G363-G371.

    PubMed  CAS  Google Scholar 

  8. Peachey, S.E., Dawson, J.M., and Harper, E.J. (1999) The Effect of Ageing on Nutrient Digestibility by Cats Fed Beef Tallow-, Sunflower Oil-, or Olive Oil-Enriched Diets, Growth Dev. Aging 63, 61–70.

    PubMed  CAS  Google Scholar 

  9. Keelan, M., and Thomson, A.B.R. (2001) Effect of Aging on Intestinal Lipid Absorption, in Handbook of Nutrition in the Aged (Wolinsky, I., and Hickson, J.F., Jr., eds.), 3rd edn., pp. 275–295, CRC Press, Boca Raton, FL.

    Google Scholar 

  10. Shiau, Y.F. (1990) Mechanism of Intestinal Fatty Acid Uptake in the Rat: The Role of an Acidic Microclimate, J. Physiol. 421, 463–474.

    PubMed  CAS  Google Scholar 

  11. Wahnon, R., Mokady, S., and Cogan, U. (1989) Age and Membrane Fluidity, Mech. Ageing Dev. 50, 249–255.

    Article  PubMed  CAS  Google Scholar 

  12. Besnard, P., Niot, I., Poirier, H., Clement, L., and Bernard, A. (2002) New Insights into the Fatty Acid-Binding Protein (FABP) Family in the Small Intestine, Mol. Cell Biochem. 239, 139–147.

    Article  PubMed  CAS  Google Scholar 

  13. Stremmel, W., Lotz, G., Strohmeyer, G., and Berk, P.D. (1985) Identification, Isolation, and Partial Characterization of a Fatty Acid Binding Protein from Rat Jejunal Microvillous Membranes, J. Clin. Invest. 75, 1068–1076.

    PubMed  CAS  Google Scholar 

  14. Stremmel, W. (1988) Uptake of Fatty Acids by Jejunal Mucosal Cells Is Mediated by a Fatty Acid Binding Membrane Protein, J. Clin. Invest. 82, 2001–2010.

    PubMed  CAS  Google Scholar 

  15. Abumrad, N.A., El-Maghrabi, M.R., Amri, E.-Z., Lopez, E., and Grimaldi, P.A. (1993) Cloning of Rat Adipocyte Membrane Protein Implicated in Binding or Transport of Long-Chain Fatty Acids That Is Induced During Preadipocyte Differentiation, J. Biol. Chem. 268, 17665–17668.

    PubMed  CAS  Google Scholar 

  16. Stahl, A., Hirsch, D.J., Gimeno, R.E., Punreddy, S., Ge, P., Watson, N., Patel, S., Kotler, M., Raimondi, A., Tartaglia, L.A., and Lodish, H.F. (1999) Identification of the Major Intestinal Fatty Acids Transport Protein, Molecular Cell 4, 299–308.

    Article  PubMed  CAS  Google Scholar 

  17. Agellon, L.B., Toth, M.J., and Thomson, A.B. (2002) Intracellular Lipid Binding Proteins of the Small Intestine, Mol. Cell Biochem. 239, 79–82.

    Article  PubMed  CAS  Google Scholar 

  18. Poirier, H., Niot, I., Degrace, P., Monnot, M.C., Bernard, A., and Besnard, P. (1997) Fatty Acid Regulation of Fatty-Acid Binding Protein Expression in the Small Intestine, Am. J. Physiol. 273, G289-G295.

    PubMed  CAS  Google Scholar 

  19. Hsu, K.T., and Storch, J. (1996) Fatty Acid Transfer from Liver and Intestinal Fatty Acid-Binding Proteins to Membranes Occurs by Different Mechanisms, J. Biol. Chem. 271, 13317–13323.

    Article  PubMed  CAS  Google Scholar 

  20. Richieri, G.V., Ogata, R.T., and Kleinfeld, A.M. (1999) Fatty Acid Interactions with Native and Mutant Fatty Acid Binding Proteins, Mol. Cell Biochem. 192, 77–85.

    Article  PubMed  CAS  Google Scholar 

  21. Bass, N.M., Manning, J.A., Ockner, R.K., Gordon, J.I., Seetharam, S., and Alpers, D.H. (1985) Regulation of the Biosynthesis of Two Distinct Fatty Acid-Binding Proteins in Rat Liver and Intestine. Influences of Sex Difference and of Clofibrate, J. Biol. Chem. 260, 1432–1436.

    PubMed  CAS  Google Scholar 

  22. Poirier, H., Degrace, P., Noit, I., Benard, A., and Besnard, P. (1996) Localization and Regulation of the Putative Membrane Fatty Acid-Transporter (FAT) in the Small Intestine. Comparison with Fatty Acid-Binding Proteins (FABP), Eur. J. Biochem. 238, 368–373.

    Article  PubMed  CAS  Google Scholar 

  23. Lin, M.C., Gong, Y.Z., Geoghegan, K.F., and Wilson, F.A. (1991) Characterization of a Novel 14 kDa Bile Acid-Binding Protein from Rat Ileal Cytosol, Biochim. Biophys. Acta 1078, 329–335.

    PubMed  CAS  Google Scholar 

  24. Kramer, W., Corsiero, D., Friedrich, M., Girbig, F., Stengelin, S., and Weyland, C. (1998) Intestinal Absorption of Bile Acids: Paradoxical Behaviour of the 14 kDa Ileal Lipid-Binding Protein in Differential Photoaffinity Labeling, Biochem. J. 333, 335–341.

    PubMed  CAS  Google Scholar 

  25. Lukie, B.E., Westergaard, H., and Dietschy, J.M. (1974) Validation of a Chamber That Allows Measurement of Both Tissue Uptake Rates and Unstirred Layer Thicknesses in the Intestine Under Conditions of Controlled Stirring, Gastroenterology 67, 652–61.

    PubMed  CAS  Google Scholar 

  26. Westergaard, H., and Dietschy, J.M. (1976) The Mechanism Whereby Bile Acid Micelles Increase the Rate of Fatty Acid and Cholesterol Uptake into the Intestinal Mucosal Cell, J. Clin. Invest. 58, 97–108.

    Article  PubMed  CAS  Google Scholar 

  27. Ecknauer, R., Vadakel, T., and Welper, T. (1982) Intestinal Morphology and Cell Production Rate in Aging Rats, J. Gerontol. 37, 151–155.

    PubMed  CAS  Google Scholar 

  28. Keelan, M., Walker, K., and Thomson, A.B.R. (1985) Effect of Chronic Ethanol and Food Deprivation on Intestinal Villus Morphology and Brush Border Membrane Content of Lipid and Marker Enzymes, Can. J. Physiol. Pharmacol. 63, 1312–1320.

    PubMed  CAS  Google Scholar 

  29. Masoro, E.J. (1980) Mortality and Growth Characteristics of Rat Strains Commonly Used in Aging Research, Exp. Aging Res. 6, 219–233.

    PubMed  CAS  Google Scholar 

  30. Hollander, D., and Morgan, D. (1979) Aging: Its Influence on Vitamin A Intestinal Absorption in vivo by the Rat, Exp. Gerontol. 14, 301–305.

    Article  PubMed  CAS  Google Scholar 

  31. Hollander, D., and Dadufalza, V.D. (1983) Increased Intestinal Absorption of Oleic Acid with Aging in the Rat, Exp. Gerontol. 18, 287–292.

    Article  PubMed  CAS  Google Scholar 

  32. Holt, P.R., and Dominguez, A.A. (1981) Intestinal Absorption of Triglyceride and Vitamin D3 in Aged and Young Rats, Dig. Dis. Sci. 26, 1109–1115.

    Article  PubMed  CAS  Google Scholar 

  33. Higgins, C.F. (1994) Flip-Flop. The Transmembrane Translocation of Lipids, Cell 79, 393–395.

    Article  PubMed  CAS  Google Scholar 

  34. Keelan, M., Cheeseman, C., Walker, K., and Thomson, A.B. (1986) Effect of External Abdominal Irradiation on Intestinal Morphology and Brush Border Membrane Enzyme and Lipid Composition, Radiat. Res. 105, 84–96.

    PubMed  CAS  Google Scholar 

  35. Ikuma, M., Hanai, H., Kaneko, E., Hayashi, H., and Hoshi, T. (1996) Effects of Aging on the Microclimate pH of the Rat Jejunum, Biochim. Biophys. Acta 1280, 19–26.

    Article  PubMed  Google Scholar 

  36. Chen, M., Yang, Y., Braunstein, E., Georgeson, K.E., and Harmon, C.M. (2001) Gut Expression and Regulation of FAT/CD36: Possible Role in Fatty Acid Transport in Rat Enterocytes, Am. J. Physiol. 281(5), E916-E923.

    CAS  Google Scholar 

  37. Mansbach, C.M., and Dowell, R. (2000) Effect of Increasing Lipid Loads on the Ability of the Endoplasmic Reticulum to Transport Lipid to the Golgi, J. Lipid Res. 41, 605–612.

    PubMed  CAS  Google Scholar 

  38. Vassileva, G., Huwyler, L., Poirier, K., Agellon, L.B., and Toth, M.J. (2000) The Intestinal Fatty Acid Protein Is Not Essential for Dietary Fat Absorption in Mice, FASEB J. 14, 2040–2046.

    Article  PubMed  CAS  Google Scholar 

  39. Richieri, G.V., Ogata, R.T., and Kleinfeld, A.M. (1994) Equilibrium Constants for the Binding of Fatty Acids with Fatty Acid-Binding Proteins from Adipocyte, Intestine, Heart, and Liver Measured with the Fluorescent Probe ADIFAB, J. Biol. Chem. 269, 23918–23930.

    PubMed  CAS  Google Scholar 

  40. Hanhoff, T., Lucke, C., and Spener, F. (2002) Insights into Binding of Fatty Acids by Fatty Acid Binding Proteins, Mol. Cell Biochem. 239, 45–54.

    Article  PubMed  CAS  Google Scholar 

  41. Altmann, S.W., Davis, H.R., Jr., Zhu, L.J., Yao, X., Hoos, L.M., Tetzloff, G., Iyer, S.P., Maguire, M., Golovko, A., Zeng, M., et al. (2004) Niemann-Pick C1 Like 1 protein Is Critical for Intestinal Cholesterol Absorption, Science 303 (5661), 1201–1204.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan B. R. Thomson.

About this article

Cite this article

Woudstra, T.D., Drozdowski, L.A., Wild, G.E. et al. The age-related decline in intestinal lipid uptake is associated with a reduced abundance of fatty acid-binding protein. Lipids 39, 603–610 (2004). https://doi.org/10.1007/s11745-004-1272-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-004-1272-9

Keywords

Navigation