Skip to main content
Log in

Type 1 diabetes compromises plasma arachidonic and docosahexaenoic acids in newborn babies

  • Articles
  • Published:
Lipids

Abstract

The activity of Δ6- and Δ5-desaturase, enzymes required for the synthesis of AA and DHA, are impaired in human and experimental diabetes. We have investigated whether neonates of type 1 diabetic women have compromised plasma AA and DHA at birth. Cord blood was obtained from healthy babies born to mothers with (n=31) and without (n=59) type 1 diabetes. FA composition of plasma choline phosphoglycerides (CPG), TG, and cholesterol esters (CE) was assayed. The neonates of the diabetics had lower levels of AA (20∶4n−6, P<0.0001), adrenic acid (22∶4n−6, P<0.01), Σn−6 metabolites (P<0.0001), docosapentaenoic acid (22∶5n−3, P<0.0001), DHA (22∶6n−3, P<0.0001), Σn−3 (P<0.0001), and Σn−3 metabolites (P<0.0001) in CPG compared with the corresponding babies of the nondiabetic mothers. Similarly, they had lower levels of AA (P<0.05), Σn−6 metabolites (P<0.05), DHA (P<0.0001), and Σn−3 metabolites (P<0.01) in plasma CE. There was also a nonsignificant reduction of AA and DHA in TG in the babies of the diabetic group. The current investigation indicates that healthy neonates born to mothers with type 1 diabetes have highly compromised levels of AA and DHA. These nutrients are of critical importance for neurovisual and vascular system development. In poorly controlled maternal diabetes, it is conceivable that the relative “insufficiency” of AA and DHA may exacerbate speech and reading impairments, behavioral disorders, suboptimal performance on developmental tests, and lower IQ, which have been reported in some children born to mothers with type 1 diabetes mellitus. Further studies are needed to understand the underlying mechanism for this biochemical abnormality and its implications for fetal and infant development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid

ALA:

α-linolenic acid

CE:

cholesterol esters

CPG:

choline phosphoglycerides

DHGLA:

dihomo-γ-linolenic acid

FABP:

FA binding proteins

GDM:

gestational diabetes mellitus

GLA:

γ-linolenic acid

LA:

linoleic acid

LCPUFA:

long-chain PUFA

References

  1. Chambaz, J., Ravel, D., Manier, M.C., Pepin, D., Mulliez, N., and Bereziat, G. (1985) Essential Fatty Acids Interconversion in the Human Fetal Liver, Biol. Neonate 47, 136–140.

    Article  PubMed  CAS  Google Scholar 

  2. Poisson, J.P., Dupuy, R.P., Sarda, P., Descomps, B., Narce, M., Rieu, D., and Crastes de Paulet, A. (1993) Evidence That Liver Microsomes of Human Neonates Desaturate Essential Fatty Acids, Biochim. Biophys. Acta 1167, 109–113.

    PubMed  CAS  Google Scholar 

  3. Descomps, B., and Rodriguez, A. (1995) Essential Fatty Acids and Prematurity: A Triple Experimental Approach, C R Seances Soc. Biol. Fil. 189, 781–796.

    PubMed  CAS  Google Scholar 

  4. Carnielli, V.P., Wattimena, D.J.L., Luijendijk, I.H.T., Boerlage, A., Degenhart, H.J., and Sauer, P.J. (1996) The Very Low Birth Weight Premature Infant Is Capable of Synthesizing Arachidonic and Docosahexaenoic Acids from Linoleic and Linolenic Acids, Pediatr. Res. 40, 169–174.

    PubMed  CAS  Google Scholar 

  5. Sauerwald, T.U., Hachey, D.L., Jensen, C.L., Chen, H., Anderson, R.E., and Heird, W.C. (1997) Intermediates in Endogenous Synthesis of C22∶6 Omega-3 and 20∶4 Omega-6 by Term and Preterm Infants, Pediatr. Res. 41, 183–187.

    PubMed  CAS  Google Scholar 

  6. Leaf, A., Leighfield, M.J., Costeloe, K., and Crawford, M.A., (1992) Factors Affecting Long-Chain Polyunsaturated Fatty Acid Composition of Plasma Choline Phosphoglycerides in Preterm Infants, J. Pediatr. Gastroenterol. Nutr. 14, 300–308.

    Article  PubMed  CAS  Google Scholar 

  7. Makrides, M., Neumann, M.A., Byard, R.W., Simmer, K., and Gibson, R.A. (1994) Fatty Acid Composition of Brain, Retina, and Erythrocytes in Breast- and Formula-fed Infants, Am. J. Clin. Nutr. 60, 189–194.

    PubMed  CAS  Google Scholar 

  8. Farquharson, J., Jamieson, E.C., Abbasi, K.A., Patrick, W.J.A., Logan, R.W., and Cockburn, F. (1995) Effect of Diet on the Fatty Acid Composition of the Major Phospholipids of Infant Cerebral Cortex, Arch. Dis. Child 72, 198–203.

    PubMed  CAS  Google Scholar 

  9. Salem, N., Jr., Wegher, B., Mena, P., and Uauy, R. (1996) Arachidonic and Docosahexaenoic Acids Are Biosynthesized from Their 18-Carbon Precursors in Human Infants, Proc. Natl. Acad. Sci. USA 93, 49–54.

    Article  PubMed  CAS  Google Scholar 

  10. Koletzko, B.B., Decsi, T., and Demmelmair, H. (1996) Arachidonic Acid Supply and Metabolism in Human Infants Born at Full Term, Lipids 31, 79–83.

    Article  PubMed  CAS  Google Scholar 

  11. Clandinin, M.T., Chappell, J.E., Leong, S., Heim, T., Swyer, P.R., and Chance, G.W. (1980) Intrauterine Fatty Acid Accretion in Human Brain: Implications for Fatty Acid Requirements, Early Hum. Dev. 4, 131–138.

    Article  PubMed  CAS  Google Scholar 

  12. Martinez, M. (1992) Tissue Levels of Polyunsaturated Fatty Acids During Early Human Development, J. Pediatr. 120, S129-S134.

    Article  PubMed  CAS  Google Scholar 

  13. Burdge, G.C., and Wootton, S.A. (2002) Conversion of α-Linolenic Acid to Eicosapentaenoic, Docosapentaenoic, and Docosahexaenoic Acids in Young Women, Br. J. Nutr. 88, 411–420.

    Article  PubMed  CAS  Google Scholar 

  14. Pawlosky, R., Hibbeln, J., Lin, Y., and Salem, N., Jr. (2003) n−3 Fatty Acid Metabolism in Women, Br. J. Nutr. 90, 993–994.

    Article  PubMed  CAS  Google Scholar 

  15. Voss, A.M., Reinhart, S., Sankarappa, S., and Sprecher, H. (1991) The Metabolism of 7,10,13,16,19-Docosahexapentaenoic Acid to 4,7,10,13,16,19-Docosahexaenoic Acid in Rat Liver Is Independent of a 4-Desaturase, J. Biol. Chem. 266, 19995–20000.

    PubMed  CAS  Google Scholar 

  16. el Boustani, S., Causse, J.E., Descomps, B., Monnier, L., Mendy, F., and De Poulet, A.C. (1989) Direct in vivo Characterization of Δ5-Desaturase Activity in Humans by Deuterium Labeling: Effect of Insulin, Metabolism 38, 315–321.

    Article  PubMed  Google Scholar 

  17. Arisaka, M., Arisaka, O., and Yamashiro, Y. (1991) Fatty Acid and Prostaglandin Metabolism in Children with Diabetes Mellitus. II. The Effect of Evening Primrose Oil Supplementation on Serum Fatty Acid and Plasma Prostaglandin Levels, Prostaglandins Leukot. Essential. Fatty Acids 43, 197–201.

    Article  CAS  Google Scholar 

  18. Brenner, R.R., Bernasconi, A.M., and Garda, H.A. (2000) Effect of Experimental Diabetes on the Fatty Acid Composition, Molecular Species of Phosphatidylcholine and Physical Properties of Hepatic Microsomal Membranes, Prostaglandins Leukot. Essent. Fatty Acids 63, 167–176.

    Article  PubMed  CAS  Google Scholar 

  19. Tilvis, R.S., and Miettinen, T.A. (1985) Fatty Acid Composition of Serum Lipids, Erythrocytes and Platelets in Insulin Dependent Diabetic Women, J. Clin. Endocrinol. Metab. 61, 741–745.

    Article  PubMed  CAS  Google Scholar 

  20. Mikhailidis, D.P., Kirtland, S.J., Barradas, M.A., Mahadeviah, S., and Dandona, P. (1986) The Effect of Dihomogammalinolenic Acid on Platelet Aggregation and Prostaglandin Release, Erythrocyte Membrane Fatty Acids and Serum Lipids: Evidence for Defects in PGE1 Synthesis and Δ5-Desaturase Activity in Insulin-Dependent Diabetics, Diabetes Res. 3, 7–12.

    PubMed  CAS  Google Scholar 

  21. Igal, R.A., Mandon, E.C., and de Gomez Dumm, I.N. (1991) Abnormal Metabolism of Polyunsaturated Fatty Acids in Adrenal Glands of Diabetic Rats, Mol. Cell Endocrinol. 77, 217–227.

    Article  PubMed  CAS  Google Scholar 

  22. Jackson, M.B., Lammi-Keefe, C.J., Jensen, R.G., Couch, S.C., and Ferris, A.M. (1994) Total Lipid and Fatty Acid Composition of Milk from Women With and Without Insulin-Dependent Diabetes Mellitus, Am. J. Clin. Nutr. 60, 353–61.

    PubMed  CAS  Google Scholar 

  23. Thomas, B., Ghebremeskel, K., Offley-Shore, B., Lowy, C., and Crawford, M.A. (2000) Fatty Acid Composition of Maternal Milk from Insulin-Dependent Diabetic, Gestational Diabetic and Healthy Women, Proc. Nutr. Soc. 59, 59A.

    Google Scholar 

  24. Ghebremeskel, K., Thomas, B., Min, Y., Stacy, F., Koukkou, E., Lowy, C., Erskine, K., Crawford, M.A., and Offley-Shore, B. (1998) Fatty Acid in Pregnant Diabetic Women and Neonates: Implications for Growth and Development, in Essential Fatty Acids and Eicosanoids: Invited Papers from the 4th International Congress, (Riemersma, R.A., Armstrong, R., Kelly, R.W., and Wilson, R., eds.), pp. 104–107, AOCS Press, Champaign.

    Google Scholar 

  25. National Diabetes Data Group (1979) Classification and Diagnosis of Diabetes Mellitus and Other Categories of Glucose Intolerance, Diabetes 28, 1039–1057.

    Google Scholar 

  26. Folch, J., Lees, M., and Sloane Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  27. Lakin, V., Haggarty, P., Abramovich, D.R., Ashton, J., Moffat, C.F., McNeill, G., Danielian, P.J., and Grubb, D. (1998) Dietary Intake and Tissue Concentration of Fatty Acids in Omnivore, Vegetarian and Diabetic Pregnancy, Prostaglandins Leukot. Essent. Fatty Acids 59, 209–220.

    Article  PubMed  CAS  Google Scholar 

  28. Wijendran, V., Bendel, R.B., Couch, S.C., Philipson, E.H., Cheruku, S., and Lammi-Keefe, C.J. (2000) Fetal Erythrocyte Phospholipids Polyunsaturated Fatty Acids Are Altered in Pregnancy Complicated with Gestational Diabetes Mellitus, Lipids 35, 927–931.

    Article  PubMed  CAS  Google Scholar 

  29. Min, Y., Ghebremeskel, K., Lowy, C., Thomas, B., and Crawford, M.A. (2004) Adverse Effect of Obesity on Red Cell Membrane Arachidonic and Docosahexaenoic Acids in Gestational Diabetes, Diabetologia 49, 75–81.

    Article  CAS  Google Scholar 

  30. Thomas, B., Ghebremeskel, K., Lowy, C., and Crawford, M.A. (2004) Comparative Plasma Fatty Acid Status of Neonates Born to Mothers With and Without Pregnancy-Induced Diabetes—A Specific Focus on n−6 and n−3 Families, Acta Paediatr. (in press).

  31. Haggarty, P., Ashton, J., Joynson, M., Abramovich, D.R., and Page, K. (1999) Effect of Maternal Polyunsaturated Fatty Acid Concentration on Transport by the Human Placenta, Biol. Neonate 75, 350–359.

    Article  PubMed  CAS  Google Scholar 

  32. Crawford, M.A. (2000) Placental Delivery of Arachidonic and Docosahexaenoic Acids: Implications for the Lipid Nutrition of Preterm Infants, Am. J. Clin. Nutr. 71 (Suppl.), 275S-284S.

    PubMed  CAS  Google Scholar 

  33. Herrera, E. (2002) Implications of Dietary Fatty Acids During Pregnancy on Placental, Fetal and Postnatal Development—A Review, Placenta 23 (Suppl. A), S9–19.

    Article  Google Scholar 

  34. Horrobin, D.F. (1988) The role of Essential Fatty Acids in the Development of Diabetic Neuropathy and Other Complications of Diabetes Mellitus, Prostaglandins Leukotr. Essent. Fatty Acids 31, 181–197.

    CAS  Google Scholar 

  35. Holman, R.T., Johnson, S.B., Gerard, J.M., Mauer, S.M., Kupcho-Sandberg, S., and Brown, D.M. (1983) Arachidonic Acid Deficiency in Streptozotocin-Induced Diabetes, Proc. Natl. Acad. Sci. USA 80, 2375–2379.

    Article  PubMed  CAS  Google Scholar 

  36. Offley-Shore, B., Thomas, B., Ghebremeskel, K., Crawford, M.A., and Lowy, C. (1999) Does Maternal Diabetes Impair Long-Chain Essential Fatty Acid Synthesis in Mother, Fetus and Breast Milk? 35th Annual Meeting: European Association for the Study of Diabetes, Brussels, Abstract OP11:76.

  37. Poisson, J.-P. (1989) Essential Fatty Acid Metabolism in Diabetes, Nutrition 5, 263–266.

    PubMed  CAS  Google Scholar 

  38. Montelongo, A., Lasuncion, M.A., Pallardo, L.F., and Herrera, E. (1992) Longitudinal Study of Plasma Lipoproteins and Hormones During Pregnancy in Normal and Diabetic Women, Diabetes 41, 1651–1659.

    PubMed  CAS  Google Scholar 

  39. Dutta-Roy, A.K. (2000) Transport Mechanisms for Long-Chain Polyunsaturated Fatty Acids in the Human Placenta, Am. J. Clin. Nutr. 71 (Suppl. 1), 315S-322S.

    PubMed  CAS  Google Scholar 

  40. Haggarty, P. (2002) Placental Regulation of Fatty Acid Delivery and Its Effect on Fetal Growth, Placenta 23 (Suppl. A), S28-S38.

    Article  PubMed  Google Scholar 

  41. Coburn, C.T., Knapp, F.F., Jr., Febbraio, M., Beets, A.L., Silverstein, R.L., and Abumrad, N.A. (2000) Defective Uptake and Utilization of Long Chain Fatty Acids in Muscle and Adipose Tissues of CD36 Knockout Mice, J. Biol. Chem. 275, 32523–32529.

    Article  PubMed  CAS  Google Scholar 

  42. Aitman, T.J., Glazier, A.M., Wallace, C.A., Cooper, L.D., Norsworthy, P.J., Wahid, F.N., Al-Majali, K.M., Trembling, P.M., Mann, C.J., Shoulders, C.C. et al. (1999) Identification of CD36 (fat) as an Insulin-Resistance Gene Causing Defective Fatty Acid and Glucose Metabolism in Hypertensive Rats, Nat. Genet. 21, 76–83.

    Article  PubMed  CAS  Google Scholar 

  43. Svennerholm, L. (1968) Distribution and Fatty Acid Composition of Phosphoglycerides in Normal Human Brain, J. Lipid Res 9, 570–579.

    PubMed  CAS  Google Scholar 

  44. Fliesler, S.J., and Anderson, R.E. (1983) Chemistry and Metabolism of Lipids in the Vertebrate Retina, Prog. Lipid Res. 22, 79–131.

    Article  PubMed  CAS  Google Scholar 

  45. Sastry, P.S. (1985) Lipids of Nervous Tissue: Composition and Metabolism, Prog. Lipid Res. 24, 69–176.

    Article  PubMed  CAS  Google Scholar 

  46. Stulnig, T.M. (2003) Immunomodulation by Polyunsaturated Fatty Acids: Mechanisms and Effects, Int. Arch. Allergy Immunol. 132, 310–321.

    Article  PubMed  CAS  Google Scholar 

  47. Vilbergsson, G., Wennergren, M., Samsioe, G., Percy, P., Percy, A., Mansson, J.E., and Svennerholm, L. (1994) Essential Fatty Acid Status Is Altered in Pregnancies Complicated by Intrauterine Growth Retardation, World Rev. Nutr. Diet 76, 105–109.

    PubMed  CAS  Google Scholar 

  48. Zhang, L. (1997) The Effects of Essential Fatty Acids Preparation in the Treatment of Intrauterine Growth Retardation, Am. J. Perinatology 14, 535–537.

    CAS  Google Scholar 

  49. Helland, I.B., Saugstad, O.D., Smith, L., Saarem, K., Solvoll K., Ganes, T., and Drevon, C.A. (2001) Similar Effects on Infants of n−3 and n−6 Fatty Acids Supplementation to Pregnant and Lactating Women, Pediatrics. 108, E82–92.

    Article  PubMed  CAS  Google Scholar 

  50. Helland, I.B., Smith, L., Saarem, K., Saugstad, O.D., and Drevon, C.A. (2003) Maternal Supplementation with Very-Long-Chain n−3 FA During Pregnancy and Lactation Augments Children's IQ at 4 Years of Age, Pediatrics 111, 1–10.

    Article  Google Scholar 

  51. Malcolm, C.A., Hamilton, R., McCulloch, D.L., Montgomery, C., and Weaver, L.T. (2003) Scotopic Electroretinogram in Term Infants Born of Mothers Supplemented with Docosahexaenoic Acid During Pregnancy, Invest. Ophthalmol. Vis. Sci. 44, 3685–3691.

    Article  PubMed  Google Scholar 

  52. Williams, C., Birch, E.E., Emmett, P.M., and Northstone, K. (2001) Stereoacuity at Age 3.5 y in Children Born Full-Term Is Associated with Prenatal and Postnatal Dietary Factors: A Report from a Population-Based Cohort Study, Am. J. Clin. Nutr. 73:316–22.

    PubMed  CAS  Google Scholar 

  53. Reece, E.A., Wu, Y.K., Wiznitzer, A., Homko, C., Yao, J., Borenstein, M., and Sloskey, G. (1996) Dietary Polyunsaturated Fatty Acid Prevents Malformations in Offspring of Diabetic Rats, Am. J. Obstet. Gynecol. 175, 818–823.

    Article  PubMed  CAS  Google Scholar 

  54. Rizzo, T., Metzger, B.E., Burns, W.J., and Burns, K. (1991) Correlations Between Antepartum Maternal Metabolism and Child Intelligence, N. Engl. J. Med. 325, 911–916.

    Article  PubMed  CAS  Google Scholar 

  55. Rizzo, T.A., Metzger, B.E., Dooley, S.L., and Cho, N.H. (1997) Early Malnutrition and Child Neurobehavioral Development: Insights from the Study of Children of Diabetic Mothers, Child Dev. 68, 26–38.

    Article  PubMed  CAS  Google Scholar 

  56. Yamashita, Y., Kawano, Y., Kuriya, N., Murakami, Y., Matsuishi, T., Yoshimatsu, K., and Kato, H. (1996) Intellectual Development of Offspring of Diabetic Mothers, Acta Paediatr. 85, 1192–1196.

    Article  PubMed  CAS  Google Scholar 

  57. Barker, D.J. (1997) Maternal Nutrition, Fetal Nutrition, and Disease in Later Life, Nutrition 13, 807–813.

    Article  PubMed  CAS  Google Scholar 

  58. Langley, S.C., and Jackson, A.A. (1994) Increased Systolic Blood Pressure in Adult Rats Induced by Fetal Exposure to Maternal Low Protein Diets, Clin. Sci. (London) 86, 217–222.

    PubMed  CAS  Google Scholar 

  59. Ozanne, S.E., Martensz, N.D., Petry, C.J., Loizou, C.L., and Hales, C.N. (1998) Maternal Low Protein Diet in Rats Programmes Fatty Acid Desaturase Activities in the Offspring, Diabetologia 41, 1337–1342.

    Article  PubMed  CAS  Google Scholar 

  60. Ozaki, T., Nishina, H., Hanson, M.A., and Poston, L. (2001) Dietary Restriction in Pregnant Rats Causes Gender-Related Hypertension and Vascular Dysfunction in Offspring, J. Physiol. 530, 141–152.

    Article  PubMed  CAS  Google Scholar 

  61. Ghosh, P., Bitsanis, D., Ghebremeskel, K., Crawford, M.A., and Poston, L. (2001) Abnormal Aortic Fatty Acid Composition and Small Artery Function in Offspring of Rats Fed a High Fat Diet in Pregnancy, J. Physiol. 15, 533, 815–822.

    Article  Google Scholar 

  62. Bjerve, K.S., Thoresen, L., Bonaa, K., Vik, T., Johnsen, H., and Brubakk, A.M. (1992) Clinical Studies with α-Linolenic Acid and Long-Chain n−3 Fatty Acids, Nutrition 8, 130–132.

    PubMed  CAS  Google Scholar 

  63. Neuringer, M., Connor, W.E., Lin, D.S., Barstad, L., and Luck, S. (1986) Biochemical and Functional Effects of Prenatal and Postnatal Omega-3 Fatty Acid Deficiency on Retina and Brain in Rhesus Monkeys, Proc. Natl. Acad. Sci. USA 83, 4021–4025.

    Article  PubMed  CAS  Google Scholar 

  64. Weisinger, H.S., Vingrys, A.J., and Sinclair, A.J. (1996) Effect of Dietary n−3 Deficiency on the Electroretinogram in the Guinea Pig, Ann. Nutr. Metab. 40, 91–98.

    Article  PubMed  CAS  Google Scholar 

  65. Carlson, S.E., Ford, A.J., Werkman, S.H., Peeples, J.M., and Koo, W.W. (1996) Visual Acuity and Fatty Acid Status of Term Infants Fed Human Milk and Formulas With and Without Docosahexaenoate and Arachidonate from Egg Yolk Lecithin, Pediatr. Res. 39, 882–888.

    PubMed  CAS  Google Scholar 

  66. Willatts, P., Forsyth, J.S., DiModugno, M.K., Varma, S., and Colvin, M. (1998) Effect of Long-Chain Polyunsaturated Fatty Acids in Infant Formula on Problem Solving at 10 Months of Age, Lancet 352, 688–691.

    Article  PubMed  CAS  Google Scholar 

  67. Agostoni, C., and Giovannini, M. (2001) Cognitive and Visual Development: Influence of Differences in Breast and Formula Fed Infants, Nutr. Health 15, 183–188.

    PubMed  CAS  Google Scholar 

  68. O'Connor, D.L., Hall, R., Adamkin, D., Auestad, N., Castillo, M., Connor, W.E., Connor, S.L., Fitzgerald, K., Groh-Wargo, S., Hartmann, E.E., et al. (2001) Growth and Development in Preterm Infants Fed Long-Chain Polyunsaturated Fatty Acids: A Prospective, Randomized Controlled Trial, Pediatrics 108, 359–371.

    Article  PubMed  Google Scholar 

  69. Uauy, R., Hoffman, D.R., Mena, P., Llanos, A., and Birch, E.E. (2003) Term Infant Studies of DHA and ARA Supplementation on Neurodevelopment: Results of Randomized Controlled Trials, J. Pediatr. 143 (Suppl. 4), S17-S25.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kebreab Ghebremeskel.

About this article

Cite this article

Ghebremeskel, K., Thomas, B., Lowy, C. et al. Type 1 diabetes compromises plasma arachidonic and docosahexaenoic acids in newborn babies. Lipids 39, 335–342 (2004). https://doi.org/10.1007/s11745-004-1237-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-004-1237-z

Keywords

Navigation