Skip to main content
Log in

Pitavastatin ameliorates severe hepatic steatosis in aromatase-deficient (Ar−/−) mice

  • Articles
  • Published:
Lipids

Abstract

Tamoxifen is a potent antagonist of estrogen, and hepatic steatosis is a frequent complication in adjuvant tamoxifen for breast cancer. Impaired hepatic FA β-oxidation in peroxisomes, microsomes, and mitochondria results in progression of massive hepatic steatosis in estrogen deficiency. This impairment, although latent, is potentially serious: About 3% of the general population in the United States is now suffering from nonalcoholic steatohepatitis associated with obesity and hyperlipidemia. Therefore, in the present study we tried to restore impaired hepatic FA β-oxidation by administering a novel statin, pitavastatin, to aromatase-deficient (Ar−/−) mice defective in intrinsic estrogen synthesis. Northern blot analysis of Ar−/− mice liver revealed a significant restoration of mRNA expression of essential enzymes involved in FA β-oxidation such as very long fatty acyl-CoA synthetase in peroxisome, peroxisomal fatty acyl-CoA oxidase, and medium-chain acyl-CoA dehydrogenase. Severe hepatic steatosis observed in Ar−/− mice substantially regressed. Consistent findings were obtained in the in vitro assays of FA β-oxidation activity. These findings demonstrate that pitavastatin is capable of restoring impaired FA β-oxidation in vivo via the peroxisome proliferator-activated receptor-α-mediated signaling pathway and is potent enough to ameliorate severe hepatic steatosis in mice deficient in intrinsic estrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AOX:

peroxisomal acyl-CoA oxidase

Ar+/+ mouse:

wildtype mouse

apo:

apolipoprotein

Ar−/− mouse:

aromatase-deficient mouse

BMI:

body mass index

CYP2EI:

microsomal cytochrome P450 2E1

CYP4A1:

microsomal cytochrome P450 4A1

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

MCAD:

medium-chain acyl-CoA dehydrogenase

NASH:

nonalcoholic steatohepatitis

PPAR-α:

peroxisome proliferator-activated receptor-α

VLACS:

very long fatty acyl-CoA synthetase

References

  1. Kelly, D.P., Hale, D.E., Rutledge, S.L., Ogden, M.L., Whelan, A.J., and Strauss, A.W. (1989) The Tissue-Specific Expression and Developmental Regulation of Two Nuclear Genes Encoding Rat Mitochondrial Proteins: Medium-Chain Acyl-CoA Dehydrogenase and Mitochondrial Malate Dehydrogenase, J. Biol. Chem. 264, 18921–18925.

    PubMed  CAS  Google Scholar 

  2. Nagao, M., Parimoo, B., and Tanaka, K. (1993) Developmental, Nutritional, and Hormonal Regulation of Tissue-Specific Expression of the Genes Encoding Various Acyl-CoA Dehydrogenase and α-Subunit of Electron Transfer Flavoprotein in Rat, J. Biol. Chem. 268, 24114–24124.

    PubMed  CAS  Google Scholar 

  3. Disch, D.L., Rader, T.A., Cresci, S., Leone, T.C., Barger, P.M., Vega, R., Wood, P.A., and Kelly, D.P. (1996) Transcriptional Control of a Nuclear Gene Encoding a Mitochondrial Fatty Acid Oxidation Enzyme in Transgenic Mice: A Role for Nuclear Receptors in Cardiac and Brown Adipose Expression, Mol. Cell. Biol. 16, 4043–4051.

    PubMed  CAS  Google Scholar 

  4. Nemoto, Y., Toda, K., Ono, M., Adachi, K.F., Saibara, T., Onishi, S., Enzan, H., Okada, T., and Shizuta, Y. (2000) Altered Constitutive Expression of Fatty Acid-Metabolizing Enzymes in Aromatase-Deficient (ArKO) Mice, J. Clin. Invest. 105, 1819–1825.

    PubMed  CAS  Google Scholar 

  5. Saibara, T., Onishi, S., Ogawa, Y., Yoshida, S., and Enzan, H. (1999) Bezafibrate for Tamoxifen-Induced Non-Alcoholic Steatohepatitis, Lancet 353, 1802.

    Article  PubMed  CAS  Google Scholar 

  6. Gail, M.H., Costatino, J.P., Bryant, J., Croyle, R., Freedman, L., Helzlsouer, K., and Vogel, V. (1991) Weighing the Risks and Benefits of Tamoxifen Treatment for Preventing Breast Cancer, J. Natl. Cancer Inst. 91, 1829–1846.

    Article  Google Scholar 

  7. Oien, K.A., Moffat, D., Curry, G.W., Dickson, J., Habeshaw, T., Mills, P.R., and MacSween, R.N.M. (1999) Cirrhosis with Steatohepatitis After Adjuvant Tamoxifen, Lancet 353, 36–37.

    Article  PubMed  CAS  Google Scholar 

  8. Pratt, D.S., Knox, T.A., and Erban, J. (1995) Tamoxifen-Induced Steatohepatitis, Ann. Intern. Med. 123, 236.

    PubMed  CAS  Google Scholar 

  9. Pinto, H.C., Baptista, A., Camilo, M.E., de Costa, E.B., Valente, A., and de Moura, M.C. (1995) Tamoxifen-Associated Steatohepatitis—Report of Three Cases, J. Hepatol. 23, 95–97.

    Article  PubMed  CAS  Google Scholar 

  10. Van Hoof, M., Rahier, J., and Horsmans, Y. (1996) Tamoxifen-Induced Steatohepatitis, Ann. Intern. Med. 124, 855–856.

    PubMed  Google Scholar 

  11. Ogawa, Y., Murata, Y., Nishioka, A., Inomata, T., and Yoshida, S. (1998) Tamoxifen-Induced Fatty Liver in Breast Cancer Patients, Lancet 351, 725.

    Article  PubMed  CAS  Google Scholar 

  12. Ludwig, J., Viggiano, T.R., McGill, D.B., and Ott, B. (1980) Nonalcoholic Steatohepatitis: Mayo Clinic Experiences with a Hitherto Unnamed Disease, Mayo Clin. Proc. 55, 434–438.

    PubMed  CAS  Google Scholar 

  13. Falck-Ytter, Y., Younossi, Z.M., Marchesini, G., and McCullough, A.J. (2001) Clinical Features and Natural History of Nonalcoholic Steatosis Syndrome, Semin. Liver Dis. 21, 17–26.

    Article  PubMed  CAS  Google Scholar 

  14. Younossi, Z.M., Diehl, A.M., and Ong, J.P. (2002) Nonalcoholic Fatty Liver Disease: An Agenda for Clinical Research, Hepatology 35, 746–752.

    Article  PubMed  Google Scholar 

  15. Early Breast Cancer Trialists' Collaborative Group (1998) Tamoxifen for Early Breast Cancer: An Overview of the Randomized Trials, Lancet 351, 1451–1467.

    Article  Google Scholar 

  16. Yoshikawa, T., Toda, K., Nemoto, Y., Ono, M., Iwasaki, S., Maeda, T., Saibara, T., Hayashi, Y., Miyazaki, E., Hiroi, M., et al. (2002) Aromatase-Deficient (ArKO) Mice Are Retrieved from Severe Hepatic Steatosis by Peroxisome Proliferator Administration, Hepatol. Res. 22, 278–287.

    Article  PubMed  CAS  Google Scholar 

  17. Bolego, C., Baetta, R., Bellosta, S., Corsini, A., and Paoletti, R. (2002) Safety Considerations for Statins, Curr. Opin. Lipidol. 13, 637–644.

    Article  PubMed  CAS  Google Scholar 

  18. Martin, G., Duez, H., Blanquart, C., Berezowski, V., Poulain, P., Fruchart, J.C., Najib-Fruchart, J., Glineur, C., and Staels, B. (2001) Statin-Induced Inhibition of the Rho-Signaling Pathway Activates PPARα and Induces HDL apoA-I, J. Clin. Invest. 107, 1423–1432.

    PubMed  CAS  Google Scholar 

  19. Aoki, T., Yoshinaka, Y., Yamazaki, H., Suzuki, H., Tamaki, T., Sato, F., Kitahara, M., and Saito, Y. (2002) Triglyceride-Lowering Effect of Pitavastatin [corrected] in a Rat Model of Post-prandial Lipemia, Eur. J. Pharmacol. 444, 107–113.

    Article  PubMed  CAS  Google Scholar 

  20. Noji, Y., Higashikata, T., Inazu, A., Nohara, A., Ueda, K., Miyamoto, S., Kajinami, K., Takegoshi, T., Koizumi, J., and Mabuchi, H. (2002) Long-Term Treatment with Pitavastatin (NK-104), a New HMG-CoA Reductase Inhibitor, of Patients with Heterozygous Familial Hypercholesterolemia, Atherosclerosis 163, 157–164.

    Article  PubMed  CAS  Google Scholar 

  21. Toda, K., Okada, K., Nakamura, K., Nishihara, M., Yokotani, K., and Shizuta, Y. (2000) Concentrations of Monoamines and Acetylcholine in the Brains of Mice Lacking the Aromatase Cytochrome P450 Gene, in Molecular Steroidgenesis, Okamoto, M., Ishimura, Y., and Newada, H., eds., Frontiers Science Series, No. 29, pp. 141–143, University Academic Press, Tokyo.

    Google Scholar 

  22. Shindo, Y., Osumi, T., and Hashimoto, T. (1978) Effects of Administration of di-(2-Ethylhexyl) Phthalate on Rat Liver Mitochondria, Biochem. Pharmacol. 27, 2683–2688.

    Article  PubMed  CAS  Google Scholar 

  23. Yeldandi, A.V., Rao, M.S., and Reddy, J.K. (2000) Hydrogen Peroxide Generation in Peroxisome Proliferator-Induced Oncogenesis, Mutat. Res. 448, 159–177.

    PubMed  CAS  Google Scholar 

  24. Gotto, A.M., Jr. (1997) Cholesterol Management in Theory and Practice, Circulation 96, 4424–4430.

    PubMed  Google Scholar 

  25. West of Scotland Coronary Prevention Study Group, Shepherd, J., Cobbe, S.M., Ford, I., Isles, C.G., Lorimer, A.R., MacFarlene, P.W., McKillop, J.H., and Packard, C.J. (1995) Prevention of Coronary Heart Disease with Pravastatin in Men with Hypercholesterolemia, New Engl. J. Med. 333, 1301–1307.

    Article  PubMed  CAS  Google Scholar 

  26. Vamecq, J., and Latruffe, N. (1999) Medical Significance of Peroxisome Proliferator-Activated Receptors, Lancet 354, 141–148.

    Article  PubMed  CAS  Google Scholar 

  27. Djouadi, F., Weinheiner, C.J., Saffitz, J.E., Pitchford, C., Bastin, J., Gonzalez, F.J., and Kelly, D.P. (1998) A Gender-Related Defect in Lipid Metabolism and Glucose Homeostasis in Peroxisome Proliferator-Activated Receptor α-Deficient Mice, J. Clin. Invest. 102, 1083–1091.

    Article  PubMed  CAS  Google Scholar 

  28. Wanless, I.R., and Lentz, J.S. (1990) Fatty Liver Hepatitis (steatohepatitis) and Obesity: An Autopsy Study with Analysis of Risk Factors, Hepatology 12, 1106–1110.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiji Saibara.

About this article

Cite this article

Egawa, T., Toda, K., Nemoto, Y. et al. Pitavastatin ameliorates severe hepatic steatosis in aromatase-deficient (Ar−/−) mice. Lipids 38, 519–523 (2003). https://doi.org/10.1007/s11745-003-1093-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-003-1093-x

Keywords

Navigation