Skip to main content
Log in

Destabilizing effects of fructose-1,6-bisphosphate on membrane bilayers

  • Articles
  • Published:
Lipids

Abstract

Fructose-1,6-bisphosphate (FBP) is a high-energy glycolytic intermediate that decreases the effects of ischemia; it has been used successfully in organ perfusion and preservation. How the cells utilize external FBP to increase energy production and the mechanism by which the molecule crosses the membrane bilayer are unclear. This study examined the effects of FBP on membrane bilayer permeability, membrane fluidity, phospholipid packing, and membrane potential to determine how FBP crosses the membrane bilayer. Large unilamellar vesicles composed of egg phosphatidylcholine (Egg PC) were made and incubated with 50 mM FBP spiked with 14C-FBP at 30°C. Uptake of FBP was significant (P<0.05) and dependent on the lipid concentration, suggesting that FBP affects membrane, bilayer permeability. With added calcium (10 mM), FBP uptake by lipid vesicles decreased significantly (P<0.05). Addition of either 5 or 50 mM FBP led to a significant increase (P<0.05) in Egg PC carboxyfluorescein leakage. We hypothesized that the membrane-permeabilizing effects of FBP may be due to a destabilization of the membrane bilayer. Small unilamellar vesicles composed of dipalmitoyl pC (DPPC) were made containing either diphenyl-1,3,5-hexatriene (DPH) or trimethylammmonia-DPH (TMA-DPH) and the effects of FBP on the fluorescence anisotropy (FA) of the fluorescent labels examined. FBP caused a significant decrease in the FA of DPH in the liquid crystalline state of DPPC (P<0.05), had no effect on FA of TMA-DPH in the liquid crystalline state of DPPC, but increased the FA of TMA-DPH in the gel state of DPPC. From phase transition measurements with DPPC/DPH or TMA-DPH, we calculated the slope of the phase transition as an indicator of the cooperativity of the DPPC molecules. FBP significantly decreased the slope, suggesting a decrease in fatty acyl chain interaction (P<0.05). The addition of 50 mM FBP caused a significant decrease (P<0.05) in the liquid crystalline/gel state fluorescence ratio of merocyanine 540, indicating increased head-group packing. To determine what effects these changes would have on cellular membranes, we labeled human endothelial cells with the membrane potential probe 3,3′-dipropylthiacarbocyanine iodide (DiSC3) and then added FBP. FBP caused a significant, dose-dependent decrease in DiSC3 fluorescence, indicating membrane depolarization. We suggest that FBP destabilizes membrane bilayers by decreasing fatty acyl chain interaction, leading to significant increases in membrane permeability that allow FBP to diffuse into the cell where it can be used as a glycolytic intermediate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DiSC3 :

3,3′-dipropylthiadicarbocyanine iodide

DPH:

1,6-diphenyl-1,3,5-hexatriene

DPPC:

dipalmitoylphosphatidylcholine

Egg PC:

egg phosphatidylcholine

FBP:

fructose-1,6-bisphosphate

MC540:

merocyanine 540

TMA-DPH:

1-(4-trimethylammoniumphenyl)-1,6-phenyl-1,3,5-hexatriene p-toluenesulfonate

References

  1. Markov, A.K., Turner, M.D., Oglethorpe, N., Neely, W.A., and Hellems, H.K. (1981) Fructose-1,6-bisphosphate: An Agent for Treatment of Experimental Endotoxin Shock, Surgery 90, 482–488.

    PubMed  CAS  Google Scholar 

  2. Markov, A.K., Oglethorpe, N., Young, D.B., and Hellems, H.K. (1981) Irreversible Hemorrhagic Shock: Treatment and Cardiac Pathophysiology, Circ Shock 8, 9–19.

    PubMed  CAS  Google Scholar 

  3. Cacioli, D., Clivati, A., Pelosi, P., Megevand, J., and Galeone, M. (1988) Hemorheological Effects of Fructose-1,6 Diphosphate in Patients with Lower Extremity Ischemia, Curr. Med. Res. Opin. 10, 668–674.

    PubMed  CAS  Google Scholar 

  4. Farias, L.A., Smith, E.E., and Markov, A.K. (1990) Prevention of Ischemic-Hypoxic Brain Injury and Death in Rabbits with Fructose-1,6-diphosphate, Stroke 21, 606–613.

    PubMed  CAS  Google Scholar 

  5. Sola, A., Berrios, M., Sheldon, R.A., Ferriero, D.M., and Gregory, G.A. (1996) Fructose-1,6-bisphosphate After Hypoxic Ischemic Injury Is Protective to the Neonatal Rat Brain, Brain Res. 741, 294–299.

    Article  PubMed  CAS  Google Scholar 

  6. Kelleher, J.A., Chan, T.Y.Y., Chan, P.H., and Gregory, G.A. (1996) Protection of Astrocytes by Fructose-1,6-bisphosphate and Citrate Ameliorates Neuronal Injury Under Hypoxic Conditions, Brain Res. 726, 167–173.

    Article  PubMed  CAS  Google Scholar 

  7. Juergens, T.M., and Hardin, C.D. (1996) Fructose-1,6-bisphosphate as a Metabolic Substrate in Hog Ileum Smooth Muscle During Hypoxia, Mol. Cell Biochem. 154, 83–93.

    Article  PubMed  CAS  Google Scholar 

  8. Janz, T.G., Leasure, J., and Olson, J.E. (1991) The Effects of Fructose-1,6-diphosphate on Myocardial Damage in Acute Coronary Artery Occlusion, Resuscitation 22, 45–54.

    Article  PubMed  CAS  Google Scholar 

  9. Danesi, R., Bernardini, N., Marchetti, A., Vernardini, M., and Tacca, M.D. (1990) Protective Effects of Fructose-1,6 Diphosphate on Acute and Chronic Doxorubicin Cardiotoxicity in Rats, Cancer Chemother. Pharmacol. 25, 326–332.

    Article  PubMed  CAS  Google Scholar 

  10. Cardoso, L.R., Santos, O.F.P., Boim, M.A., Barros, E.G., Ajzen, H., and Schor, N. (1996) Fructose-1,6 Diphosphate: Potential Protection in Cyclosporine-Induced Renal Impairment, Nephron 72, 67–71.

    Article  PubMed  CAS  Google Scholar 

  11. Rao, M.R., Olinde, K.D., and Markov, A.K. (1997) Protection from Amphotericin B-Induced Lipid Peroxidation in Rats by Fructose-1,6 Diphosphate, Res. Commun. Mol. Pathol. Pharmacol. 95, 217–220.

    PubMed  CAS  Google Scholar 

  12. Starnes, J.W., Seiler, K.S., Bowles, D.K., Giardina, B., and Lazzarino, G. (1992) Fructose-1,6-bisphosphate Improves Efficiency of Work in Isolated Perfused Rat Hearts, Am. J. Physiol. 262, H380-H384.

    PubMed  CAS  Google Scholar 

  13. Takeuchi, K., Hung, C.D., Friehs, I., Glynn, P., D’Agostino, D., Simplaceanu, E., McGowan, F.X., and del Nido, P.J. (1998) Administration of Fructose-1,6-diphosphate During Early Reperfusion Significantly Improves Recovery of Contractile Function in the Postischemic Heart, J. Thorac. Cardiovasc. Surg. 116, 335–343.

    Article  PubMed  CAS  Google Scholar 

  14. Nuutinen, E.M., Lazzarino, G., Giardina, B., and Hassinen, I.E. (1991) Effect of Exogenous Fructose-1,6-bisphosphate on Glycolysis in the Isolated Perfused Rat Heart, Am. Heart J. 122, 523–527.

    Article  PubMed  CAS  Google Scholar 

  15. Lazzarino, G., Nuutinen, M.E., Tavazzi, B., Cerroni, L., Di Pierro, D., and Giardina, B. (1991) Preserving Effect of Fructose-1,6-bisphosphate on High-Energy Phosphate Compounds During Anoxia and Reperfusion in Isolated Langendorff-Perfused Rat Hearts, J. Mol. Cell Cardiol. 23, 13–23.

    Article  PubMed  CAS  Google Scholar 

  16. Munger, M.A., Botti, R.E., Grinblatt, M.A., and Kasmer, R.J. (1994) Effect of Intravenous Fructose-1,6-diphosphate on Myocardial Contractility in Patients with Left Ventricular Dysfunction, Pharmacotherapy 14, 522–528.

    PubMed  CAS  Google Scholar 

  17. Markov, A.K., Brumley, M.A., Figueroa, A., Skelton, T.N., and Lehan, P.H. (1997) Hemodynamic Effects of Fructose-1,6 Diphosphate in Patients with Normal and Impaired Left Ventricular Function, Am. Heart J. 133, 541–549.

    Article  PubMed  CAS  Google Scholar 

  18. Herrero, I., Torras, J., Carrera, M., Castells, A., Pasto, L., Gil-Vernet, S., Alsina, J., and Grinyo, J.M. (1995) Evaluation of a Preservation Solution Containing Fructose-1,6-diphosphate and Mannitol Using the Isolated Perfused Rat Kidney. Comparison with Euro-Collins and University of Wisconsin Solutions, Nephrol. Dial. Transplant. 10, 519–526.

    PubMed  CAS  Google Scholar 

  19. Torras, J., Borobia, F.G., Herrero, I., Carrera, M., Riera, M., Bartrons, R.R., Figueras, J., Alsina, J., Cruzado, J.M., Jaurrietta, E., et al. (1995) Hepatic Preservation with a Cold-Storage Solution Containing Fructose-1,6-diphosphate and Mannitol: Evaluation with the Isolated Perfused Rat Liver and Comparison with University of Wisconsin Solution, Transplant Proc. 27, 2379–2381.

    PubMed  CAS  Google Scholar 

  20. Niu, W., Zhang, F., Ehringer, W., Tseng, M., Gray, L., and Chien, S. (1999) Enhancement of Hypothermic Heart Preservation with Fructose-1,6-diphosphate, J. Surg. Res. 85, 120–129.

    Article  PubMed  CAS  Google Scholar 

  21. Chien, S., Zhang, F., Niu, W., Ehringer, W., Chiang, B., Shi, X., and Gray, L.A., Jr. (2000) Fructose-1,6-diphosphate and a Glucose-Free Solution Enhances Functional Recovery in Hypothermic Heart Preservation, J. Heart Lung Transplant. 19, 277–285.

    Article  PubMed  CAS  Google Scholar 

  22. Rigobello, M.P., Bianchi, M., Deana, R., and Galzigna, L. (1982) Interaction of Fructose-1,6-diphosphate with Some Cell Membranes, Agressologie 23, 63–66.

    PubMed  CAS  Google Scholar 

  23. Ehringer, W.D., Niu, W., Chiang, B., Wang, O.L., Gordon, L., and Chien, S. (2000) Membrane Permeability of Fructose-1,6-diphosphate in Lipid Vesicles and Endothelial Cells, Mol. Cell. Biochem. 210, 35–45.

    Article  PubMed  CAS  Google Scholar 

  24. Ehringer, W.D., Chiang, B., and Chien S. (2001) The Uptake and Metabolism of Fructose-1,6-diphosphate in Rat Cardiomyocytes, Mol. Cell. Biochem. 221, 33–40.

    Article  PubMed  CAS  Google Scholar 

  25. Hardin, C.D., and Roberts, T.M. (1994) Metabolism of Exogenously Applied Fructose-1,6-bisphosphate in Hypoxic Vascular Smooth Muscle, Am. J. Physiol. 267, H2325-H2332.

    PubMed  CAS  Google Scholar 

  26. Espanol, M.T., Litt, L., Hasegawa, K., Chang, L.H., Macdonald, J.M., Gregory, G., James, T.L., and Chan, P.H. (1998) Fructose-1,6-bisphosphate Preserves Adenosine Triphosphate but Not Intracellular pH During Hypoxia in Respiring Neonatal Rat Brain Slices, Anesthesiology 88, 461–472.

    Article  PubMed  CAS  Google Scholar 

  27. Roig, T., Bartrons, R., and Bermudez, J. (1997) Exogenous Fructose-1,6-bisphosphate Reduces K+ Permeability in Isolated Rat Hepatocytes, Am. J. Physiol. 273, C473-C478.

    PubMed  CAS  Google Scholar 

  28. Galzigna, L., and Rigobello, M.P. (1986) Proton and Potassium Fluxes in Rat Red Blood Cells Incubated with Sugar Phosphates, Experientia 42, 138–139.

    Article  PubMed  CAS  Google Scholar 

  29. Hassinen, I.E., Nuutinen, E.M., Ito, K., Nioka, S., Lazzarino, G., Giardina, B., and Chance, B. (1991) Mechanism of the Effects of Exogenous Fructose-1,6-bisphosphate on Myocardial Energy Metabolism, Circulation 83, 584–593.

    PubMed  CAS  Google Scholar 

  30. Brasitus, T.A., and Dudeja, P.K. (1986) Modulation of Lipid Fluidity of Small- and Large-Intestinal Antipodal Membranes by Ca2+, Biochem. J. 239, 625–631.

    PubMed  CAS  Google Scholar 

  31. Finder, D.R., and Hardin, C.D. (1999) Transport and Metabolism of Exogenous Fumarate and 3-Phosphoglycerate in Vascular Smooth Muscle, Mol. Cell. Biochem. 195, 113–121.

    Article  PubMed  CAS  Google Scholar 

  32. Bickler, P.E., and Buck, L.T. (1996) Effects of Fructose-1,6-bisphosphate on Glutamate Release and ATP Loss from Rat Brain Slices During Hypoxia, J. Neurochem. 67, 1463–1468.

    Article  PubMed  CAS  Google Scholar 

  33. Wheeler, T.J., Cole, D., and Hauck, M.A. (1998) Characterization of Glucose Transport Activity Reconstituted from Heart and Other Tissues, Biochim. Biophys. Acta 1414, 217–230.

    Article  PubMed  CAS  Google Scholar 

  34. Cullis, P.R., and Verleij, A.J. (1979) Modulation of Membrane Structure by Ca2+ and Dibucaine as Detected by 31P NMR, Biochim. Biophys. Acta 552, 546–551.

    Article  PubMed  CAS  Google Scholar 

  35. Trauble, H., and Eibl, H. (1974) Electrostatic Effects on Lipid Phase Transitions: Membrane Structure and Ionic Environment, Proc. Natl. Acad. Sci. 71, 214–219.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William D. Ehringer.

About this article

Cite this article

Ehringer, W.D., Su, S., Chiang, B. et al. Destabilizing effects of fructose-1,6-bisphosphate on membrane bilayers. Lipids 37, 885–892 (2002). https://doi.org/10.1007/s11745-002-0975-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-002-0975-2

Keywords

Navigation