Skip to main content
Log in

Postprandial triglyceride-rich lipoprotein metabolism and insulin sensitivity in nonalcoholic steatohepatitis patients

  • Published:
Lipids

Abstract

Nonalcoholic steatohepatitis (NASH) is a syndrome frequently associated with obesity, diabetes mellitus, and dyslipidemia. Increased fasting insulinemia and blood glucose levels may trigger a reduced catabolism of lipoproteins rich in triglycerides by lipoprotein lipase (LPL) and an increase in their fasting and postprandial levels. An association between postprandial lipemia and coronary heart disease has been observed, and many studies now support this concept. The most important result of our study is the increase in triglyceride-rich lipoproteins response after a fat load in NASH patients, the increase of incremental area under the postprandial curve, and the duration of the hypertriglyceridemic peaks. The persisting postprandial plasma triglyceride elevation in NASH patients was mostly due to the elevated plasma level of large triglyceride-rich particles. These data are coupled with lower plasma HDL2-cholesterol levels. As for lipoprotein analyses, the number of apolipoprotein B100 (ApoB100) particles is not significantly different between the two groups, and the higher content of triglycerides in NASH very low density lipoproteins (VLDL) increases the triglyceride-to-ApoB ratio and the particle size. A decreased enzymatic activity of LPL or a defective assembly and secretion of VLDL from hepatocytes due to a moderate reduction in microsomal triglyceride transfer protein could be involved in the overloading of VLDL. Moreover, the undetectable levels of ApoB48 in triglyceride-rich lipoproteins fraction A could be related to the synthesis of smaller and denser chylomicrons. NASH patients not only are insulin resistant but also tend to present alterations in fatty meal delivery, suggesting that an increase in fasting plasma insulin and glucose, with insulin resistance, joins with depressed metabolism of triglyceride-rich lipoproteins. An increase in postprandial triglyceride levels with production of large VLDL suggests an atherogenic behavior of lipid metabolism, in accordance with the high prevalence of the metabolic syndrome in NASH patients. This paper suggests that a fat load may be useful in early detection of atherogenic risk in the presence of otherwise normal fasting plasma lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Apo:

apolipoprotein

AUC:

area under the postprandial triglyceride curve

BMI:

body mass index

Chol:

cholesterol

FFA:

free fatty acid

FPG:

fasting plasma glucose

FSIGT:

frequently sampled intravenous glucose tolerance test

HDL:

high density lipoproteins

LDL:

low density lipoproteins

LPL:

lipoprotein lipase

MTP:

microsomal triglyceride transfer protein

NASH:

nonalcoholic steatohepatitis

OFL:

oral fat load

PCR:

polymerase chain reaction

SDS:

sodium dodecyl sulfate

Sf:

Svedberg flotation rate

SI:

sensitivity index

Tg:

triglyceride

TRL:

triglyceride-rich lipoproteins

VLDL:

very low density lipoproteins

References

  1. Sheath, S.G., Gordon, F.D., and Chopra, S. (1997) Nonalcoholic Steatohepatitis, Ann. Intern. Med. 126, 137–145.

    Google Scholar 

  2. Ludwig, J., Viggiano, T.R., McGill, D.B., and Ott, B.J. (1980) Nonalcoholic Steatohepatitis. Mayo Clinic Experiences with a Hitherto Unnamed Disease, Mayo Clin. Proc. 55, 434–438.

    PubMed  CAS  Google Scholar 

  3. Powell, E.E., Cooksley, W.G., Hanson, R., Searle, J., Halliday, J.W., and Powell, L.W. (1990) The Natural History of Nonalcoholic Steatohepatitis: A Follow-Up Study of Forty-Two Patients for up to 21 Years, Hepatology 11, 74–80.

    PubMed  Google Scholar 

  4. Cohn, J.S., McNamara, J.R., Cohn, S.D., Ordovas, J.M., and Schaefer, E.J. (1988) Postprandial Plasma Lipoprotein Changes in Human Subjects of Different Ages, J. Lipid Res. 29, 469–479.

    PubMed  CAS  Google Scholar 

  5. Krasinski, S.D., Cohn, J.S., Schaefer, E.J., and Russel, R.M. (1990) Postprandial Plasma Retinyl Ester Response Is Greater in Older Subjects Compared with Younger Subjects. Evidence of Delayed Plasma Clearance of Intestinal Lipoproteins, J. Clin. Invest. 85, 883–892.

    PubMed  CAS  Google Scholar 

  6. Grundy, S.M. (1998) Hypertriglyceridemia, Atherogenic Dyslipidemia, and the Metabolic Syndrome, Am. J. Cardiol. 81 (4A), 18B-25B.

    Article  PubMed  CAS  Google Scholar 

  7. Malmström, R., Packard, C.J., Watson, T.D., Rannikko, S., Caslake, M., Bedford, D., Stewart, P., Yki-Jarvinen, H., Shepherd, J., and Taskinen, M.R. (1997) Metabolic Basis of Hypotriglyceridemic Effects of Insulin in Normal Men, Arterioscler. Thromb. Vasc. Biol. 17, 1454–1464.

    PubMed  Google Scholar 

  8. Zilversmit, D.B. (1979) Atherosclerosis: A Postprandial Phenomenon, Circulation 60, 473–485.

    PubMed  CAS  Google Scholar 

  9. Havel, R.J. (1994) Postprandial Hyperlipidemia and Remnants Lipoproteins, Curr. Opin. Lipidol. 5, 102–109.

    Article  PubMed  CAS  Google Scholar 

  10. Cohn, J.S. (1994) Postprandial Lipid Metabolism, Curr. Opin. Lipidol. 5, 185–190.

    PubMed  CAS  Google Scholar 

  11. Björkegren, J., Hamsten, A., Milne, R.W., and Karpe, F. (1997) Alterations of VLDL Composition During Alimentary Lipemia, J. Lipid Res. 38, 301–314.

    PubMed  Google Scholar 

  12. Karpe, F., Hellénius, M.L., and Hamsten, A. (1999) Differences in Postprandial Concentrations of Very-Low-Density Lipoprotein and Chylomicron Remnants Between Normotriglyceridemic and Hypertriglyceridemic Men With and Without Coronary Heart Disease, Metabolism 48, 301–307.

    Article  PubMed  CAS  Google Scholar 

  13. Hamsten, A., and Karpe, F. (1996) Triglycerides and Coronary Heart Disease—Has Epidemiology Given Us the Right Answer?, in Lipids: Current Perspective (Betteridge, D.J., ed.), pp. 43–68, Martin Dunitz London.

    Google Scholar 

  14. Warnick, G.R., and Albers, J.J. (1978) A Comprehensive Evolution of the Heparin Manganese Precipitation Procedure for Estimating High Density Lipoprotein Cholesterol, J. Lipid Res. 29, 65–76.

    Google Scholar 

  15. Gidez, L.I., Miller, G.J., Burnstein, M., Slagle, S., and Eder, H.A. (1982) Separation and Quantitation of Subclasses of Human Plasma HDL by a Single Precipitation Procedure, J. Lipid Res. 23, 1206–1216.

    PubMed  CAS  Google Scholar 

  16. Friedewald, W.T., Levy, R.I., and Frederickson, D.S. (1972) Estimation of the Concentration of Low Density Lipoprotein Cholesterol in Plasma Without Use of the Preparative Ultracentrifuge, Clin. Chem. 18, 499–502.

    PubMed  CAS  Google Scholar 

  17. Hixson, J.E., and Vernier, D.T. (1990) Restriction Isotyping of Human Apolipoprotein E by Gene Amplification and Cleavage with HhaI, J. Lipid Res. 31, 545–548.

    PubMed  CAS  Google Scholar 

  18. Bergman, R.N., Phillips, L.S., and Cobelli, C. (1981) Physiologic Evaluation of Factors Controlling Glucose Tolerance in Man, J. Clin. Invest. 68, 1456–1467.

    PubMed  CAS  Google Scholar 

  19. Redgrave, T.G., and Carlson, L.A. (1979) Changes in Plasma Very Low Density and Low Density Lipoprotein Content, Composition, and Size After a Fatty Meal in Normo- and Hypertriglyceridemic Man, J. Lipid Res. 20, 217–229.

    PubMed  CAS  Google Scholar 

  20. Battula, S.B., Fitzsimons, O., Moreno, S., Owens, D., Collins, P., Johnson, A., and Tomkin, G.H. (2000) Postprandial Apolipoprotein B48- and B100-Containing Lipoproteins in Type 2 Diabetes: Do Statins Have a Specific Effect on Triglyceride Metabolism? Metabolism 49, 1049–1054.

    Article  PubMed  CAS  Google Scholar 

  21. Karpe, F., and Hamsten, A. (1994) Determination of Apolipoproteins B48 and B100 in Triglyceride-Rich Lipoproteins by Analytical SDS-PAGE, J. Lipid Res. 35, 1311–1317.

    PubMed  CAS  Google Scholar 

  22. Syvänne, M., and Taskinen, M.R. (1997) Lipids and Lipoproteins as Coronary Risk Factor in Non-Insulin-Dependent Diabetes Mellitus, Lancet 350 (suppl. 1), 20–23.

    Article  Google Scholar 

  23. Harbis, A., Defoort, C., Narbonne, H., Juhel, C., Senft, M., Latge, C., Delenne, B., Portugal, H., Atlan-Gepner, C., Vialettes, B., and Lairon, D. (2001) Acute Hyperinsulinism Modulates Plasma Apolipoprotein B-48 Triglyceride-Rich Lipoproteins in Healthy Subjects During the Postprandial Period, Diabetes 50, 462–469.

    PubMed  CAS  Google Scholar 

  24. Jeppesen, J., Hollenbeck, C.B., Zhou, M.-Y., Coulston, A.M., Jones, C., Ida Chen, Y.-D., and Reaven, G.M. (1995) Relation Between Insulin Resistance, Hyperinsulinemia, Postheparin Plasma Lipoprotein Lipase Activity, and Postprandial Lipemia, Arterioscerl. Thromb. Vasc. Biol. 15, 320–324.

    CAS  Google Scholar 

  25. Schrezenmeir, J., Keppler, I., Fenselau, S., Weber, P., Biesalski, H.K., Probst, R., Laue, C., Zuchhold, H.D., Prellwitz, W., and Beyer, J. (1993) The Phenomenon of a High Triglyceride Response to an Oral Lipid Load in Healthy Subjects and Its Link to the Metabolic Syndrome, Ann. NY Acad. Sci. 683, 302–314.

    PubMed  CAS  Google Scholar 

  26. Bernard, S., Touzet, S., Personne, I., Lapras, V., Bondon, P.J., Berthezene, F., and Moulin, P. (2000) Association Between Microsomal Triglyceride Transfer Protein Gene Polymorphism and the Biological Features of Liver Steatosis in Patients with Type II Diabetes, Diabetologia 43, 995–999.

    Article  PubMed  CAS  Google Scholar 

  27. Hussain, M.H. (2000) A Proposed Model for Assembly of Chylomicrons, Atherosclerosis 148, 1–15.

    Article  PubMed  CAS  Google Scholar 

  28. Gleeson, A., Anderton, K., Owens, D., Bennett, A., Collins, P., Johnson, A., White, D., and Tomkin, G.H. (1999) The Role of Microsomal Triglyceride Transfer Protein and Dietary Cholesterol in Chylomicron Production in Diabetes, Diabetologia 42, 944–948.

    Article  PubMed  CAS  Google Scholar 

  29. Patsch, J.R., Misenböck, G., Hopferwieser, T., Muhlberger, V., Knapp, E., Dunn, J.K., Gotto, A.M., Jr., and Patsch, W. (1992) Relation of Triglyceride Metabolism and Coronary Artery Disease. Study in the Postprandial State, Arterioscl. Thromb. 12, 1336–1345.

    PubMed  CAS  Google Scholar 

  30. Misenböck, G., and Patsch, J.R. (1992) Postprandial Hyperlipemia: The Search for the Atherogenic Lipoprotein, Curr. Opin. Lipidol. 3, 186–201.

    Article  Google Scholar 

  31. Mann, C.J., Yen, F.T., Grant, A.M., and Bihain, B.E. (1991) Mechanism of Plasma Cholesterol Ester Transfer in Hypertriglyceridemia, J. Clin. Invest. 88, 2059–2066.

    PubMed  CAS  Google Scholar 

  32. Patsch, J.R., Prasad, S., Gotto, A.M., Jr., and Patsch, W. (1987) High Density Lipoprotein 2: Relationship of the Plasma Levels of this Lipoprotein Species to its Composition, to the Magnitude of Postprandial Lipemia and to the Activities of Lipoprotein Lipase and Hepatic Lipase, J. Clin. Invest. 80, 341–347.

    Article  PubMed  CAS  Google Scholar 

  33. Davis, C.E., Gordon, D., LaRosa, J., Wood, P.D., and Halperin, M. (1980) Correlation of Plasma High-Density Lipoprotein Cholesterol Levels with Other Plasma Lipid and Lipoprotein Concentrations. The Lipid Research Clinics Program Prevalence Study, Circulation 62, 24–30.

    CAS  Google Scholar 

  34. Karpe, F., Bard, J.M., Steiner, G., Carlson, L.A., Fruchart, J.C., and Hamsten, A. (1993) HDLs and Alimentary Lipemia. Studies in Men with Previous Myocardial Infarction at a Young Age, Arterioscler. Thromb. 13, 11–22.

    PubMed  CAS  Google Scholar 

  35. Deckelbaum, R.J., Granot, E., Oschry, Y., Rose, L., and Eisemberg, S. (1984) Plasma Triglyceride Determines Structure-Composition in Low and High Density Lipoproteins, Arteriosclerosis 4, 225–231.

    PubMed  CAS  Google Scholar 

  36. Patsch, J.R., Prasad, S., Gotto, A.M., Jr., and Patsch, W. (1987) High Density Lipoprotein2. Relationship of the Plasma Levels of This Lipoprotein Species to its Composition, to the Magnitude of Postprandial Lipemia, and to the Activities of Lipoprotein Lipase and Hepatic Lipase, J. Clin. Invest. 80, 341–347.

    PubMed  CAS  Google Scholar 

  37. Karpe, F., Tornvall, P., Olivecrona, T., Steiner, G., Carlson, L.A., and Hamsten, A. (1993) Composition of Human Low Density Lipoprotein: Effects of Postprandial Triglyceride-Rich Lipoproteins, Lipoprotein Lipase, Hepatic Lipase and Cholesteryl Ester Transfer Protein, Atherosclerosis 98, 33–49.

    Article  PubMed  CAS  Google Scholar 

  38. Björkegren, J., Packard, C.J., Hamsten, A., Bedford, D., Caslake, M., Foster, L., Shepherd, J., and Karpe, F. (1996) Accumulation of Large Very Low Density Lipoprotein in Plasma During Intravenous Infusion of a Chylomicron-Like Triglyceride Emulsion Reflects Competition for a Common Lipolytic Pathway, J. Lipid Res. 37, 76–86.

    PubMed  Google Scholar 

  39. Boquist, S., Hamsten, A., and Ruotolo, G. (2000) Insulin and Nonesterified Fatty Acid Relations to Alimentary Lipaemia and Plasma Concentrations of Postprandial Triglyceride-Rich Lipoproteins in Healthy Middle-Aged Men, Diabetologia 43, 185–193.

    Article  PubMed  CAS  Google Scholar 

  40. Coresh, J., Kwiterovich, P.O., Smith, H.H., and Bachorik, P.S. (1993) Association of Plasma Triglyceride Concentration and LDL Particle Diameter, Density, and Chemical Composition with Premature Coronary Artery Disease in Men and Women, J. Lipid Res. 34, 1687–1697.

    PubMed  CAS  Google Scholar 

  41. Dejager, S., Bruckert, E., and Chapman, M.J. (1993) Dense Low Density Lipoprotein Subspecies with Diminished Oxidative Resistance Predominate in Combined Hyperlipidemia, J. Lipid Res. 34, 295–308.

    PubMed  CAS  Google Scholar 

  42. Steinberg, D., Parthasarathy, S., Carew, T.E., Khoo, J.C., and Witztum, J.L. (1989) Modifications of Low-Density Lipoprotein That Increase Its Atherogenicity, N. Engl. J. Med. 320, 915–924.

    Article  PubMed  CAS  Google Scholar 

  43. Couillard, C., Bergeron, N., Prud'homme, D., Bergeron, J., Tremblay, A., Bouchard, C., Mauriège, P., and Després, J.P. (1998) Postprandial Triglyceride Response in Visceral Obesity in Men, Diabetes 47, 953–960.

    PubMed  CAS  Google Scholar 

  44. Taskinen, M.R. (1995) Insulin Resistance and Lipoprotein Metabolism, Curr. Opin. Lipidol. 6, 153–160.

    Article  PubMed  CAS  Google Scholar 

  45. Björntorp, P. (1994) Fatty Acids, Hyperinsulinemia, and Insulin Resistance: Which Comes First? Curr. Opin. Lipidol. 5, 166–174.

    Article  PubMed  Google Scholar 

  46. Marchesini, G., Brizi, M., Morselli-Labate, A.M., Bianchi, G., Bugianesi, E., McCullough, A.J., Forlani, G., and Melchionda, N. (1999) Association of Nonalcoholic Fatty Liver Disease with Insulin Resistance, Am. J. Med. 107, 450–455.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Cassader.

About this article

Cite this article

Cassader, M., Gambino, R., Musso, G. et al. Postprandial triglyceride-rich lipoprotein metabolism and insulin sensitivity in nonalcoholic steatohepatitis patients. Lipids 36, 1117–1124 (2001). https://doi.org/10.1007/s11745-001-0822-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-001-0822-5

Keywords

Navigation