Skip to main content
Log in

Measurement of human chylomicron triglyceride clearance with a labeled commercial lipid emulsion

  • Article
  • Published:
Lipids

Abstract

Human chylomicron triglyceride (TG) kinetics has been difficult to determine directly owing to technical limitations. This report describes a new method for studying chylomicron metabolism. Healthy volunteers (n=10) sipped a drink providing 175 mg fat·kg−1·h−1 for 7.5 h to produce a steady-state chylomicronemia. A commercial 10% intravenous lipid emulsion was labeled with [3H]triolein, purified by high-performance liquid chromatography, and sterilized. A trace amount of labeled emulsion was injected intravenously 30 min before (i.e., in the fasting state) and 5, 6, and 7 h after sipping began (i.e., triplicate determinations in the fed state). Chylomicron half-lives were calculated from the monoexponential decay curves, and apparent distribution volumes were estimated by back-extrapolation to time zero. Plasma and estimated chylomicron TG concentrations increased from 89±13 and 0.8±0.3 to 263±43 and 91±39 mg/dL (mean±SEM), respectively, with feeding. Tracer-determined chylomicron TG half-lives were 5.34±0.58 and 6.51±0.58 min during the fasting and fed states, respectively (P<0.01). The apparent distribution volume during the fasting state was 24% greater than plasma volume (4515±308 vs. 3630±78 mL, P<0.02), consistent with significant margination of lipid emulsion particles to endothelial binding sites. Margination was reduced during the fed state, suggesting that native chylomicrons competed with lipid emulsion particles for endothelial lipoprotein lipase. The results indicate that a radiolabeled commercial lipid emulsion is metabolized in a fashion similar to native chylomicron TG, and thus can be used to study chylomicron TG kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HDL:

high density lipoprotein

HPLC:

high-performance liquid chromatography

LDL:

low density lipoprotein

LpL:

lipoprotein lipase

PL:

phospholipid

TG:

triglyceride

VLDL:

very low density lipoprotein

References

  1. Sharrett, A.R., Chambless, L.E., Heiss, G., Patton, C.C., and Patsch, W. (1995) Association of Postprandial Triglyceride and Retinyl Palmitate Responses with Asymptomatic Carotid Artery Atherosclerosis in Middle-Aged Men and Women. The Atherosclerosis Risk in Communities (ARIC) Study, Arterioscler. Thromb. Vasc. Biol. 15, 2122–2129.

    PubMed  CAS  Google Scholar 

  2. Karpe, F., Steiner, G., Uffelman, K., Olivecrona, T., and Hamsten, A. (1994) Postprandial Lipoproteins and Progression of Coronary Atherosclerosis, Atherosclerosis 106, 83–97.

    Article  PubMed  CAS  Google Scholar 

  3. Alaupovic, P., Mack, W.J., Knight-Gibson, C., and Hodis, H.N. (1997) The Role of Triglyceride-Rich Lipoprotein Families in the Progression of Atherosclerotic Lesions as Determined by Sequential Coronary Angiography from a Controlled Clinical Trial, Arterioscler. Thromb. Vasc. Biol. 17, 715–722.

    PubMed  CAS  Google Scholar 

  4. Weintraub, M., Charach, G., and Grosskopf, I. (1997) Disturbances in Dietary Fat Metabolism and Their Role in the Development of Atherosclerosis, Biomed. Pharmacotherap. 51, 311–313.

    Article  CAS  Google Scholar 

  5. Karpe, F., Hellénius, M.-L., and Hamsten, A. (1999) Differences in Postprandial Concentrations of Very Low Density Lipoprotein and Chylomicron Remnants Between Normotriglyceridemic and Hypertriglyceridemic Men with and without Coronary Heart Disease, Metabolism 48, 301–307.

    Article  PubMed  CAS  Google Scholar 

  6. Nestel, P.J., Denborough, M., and O'Dea, K. (1962) Disposal of Human Chylomicrons Administered Intravenously in Ischaemic Heart Disease and Essential Hyperlipemia, Circ Res. 10, 786–791.

    PubMed  CAS  Google Scholar 

  7. Grundy, S.M., and Mok, H.Y.I. (1976) Chylomicron Clearance in Normal and Hyperlipidemic Man, Metabolism 25, 1225–1239.

    Article  PubMed  CAS  Google Scholar 

  8. Cohen, J.C. (1989) Chylomicron Triglyceride Clearance: A Comparison of Three Assessment Methods, Am. J. Clin. Nutr. 49, 306–313.

    PubMed  CAS  Google Scholar 

  9. Rossner, S. (1974) Studies on an Intravenous Fat Tolerance Test, Methodological, Experimental and Clinical Experiences with Intralipid(R), Acta Med. Scand. 564, 1–24.

    CAS  Google Scholar 

  10. Boivin, A., and Deshaies, Y. (1995) Dietary Rat Models in Which the Development of Hypertriglyceridemia and That of Insulin Resistance Are Dissociated, Metabolism: Clinical & Experimental 44, 1540–1547.

    CAS  Google Scholar 

  11. Seidner, D.L., Mascioli, E.A., Istfan, N.W., Porter, K.A., Selleck, K., Blackburn, G.L., and Bistrian, B.R. (1989) Effects of Long-Chain Triglyceride Emulsions on Reticuloendothelial System Function in Humans, JPEN. 13, 614–619.

    CAS  Google Scholar 

  12. Nakandakare, E.R., Lottenberg, S.A., Oliveira, H.C.F., Bertolami, M.C., Vasconcelos, K.S., Sperotto, G., and Quintão, E.C.R. (1994) Simultaneous Measurements of Chylomicron Lipolysis and Remnant Removal Using a Doubly Labeled Artificial Lipid Emulsion: Studies in Normolipidemic and Hyperlipidemic Subjects, J. Lipid Res. 35, 143–152.

    PubMed  CAS  Google Scholar 

  13. Redgrave, T., Ly, H.L., Quintao, E., Ramberg, C.F., and Boston, R. (1993) Clearance from Plasma of Triacylglycerol and Cholesteryl Ester After Intravenous Injection of Chylomicron-Like Lipid Emulsions in Rats and Man, Biochem. J. 290, 843–847.

    PubMed  CAS  Google Scholar 

  14. Oliveira, H., Hirata, M.H., Redgrave, T.G., and Maranhao, R. (1988) Competition Between Chylomicrons and Their Remnants for Plasma Removal: A Study with Artificial Emulsion Models of Chylomicrons, Biochim. Biophys. Acta 958, 211–217.

    PubMed  CAS  Google Scholar 

  15. Ferezou, J., Lai, N.-T., Leray, C., Hajri, T., Frey, A., Cabaret, Y., Courtieu, J., Lutton, C., and Bach, A.C. (1994) Lipid Composition and Structure of Commercial Parenteral Emulsions, Biochim. Biophys. Acta, 1213, 149–158.

    PubMed  CAS  Google Scholar 

  16. Park, Y.-S., Grellner, W.J., Harris, W.S., and Miles, J.M. (2000) A New Method for the Study of Chylomicron Kinetics in vivo, Am. J. Physiol. 279, E1258-E1263.

    CAS  Google Scholar 

  17. Fraser, R. (1970) Size and Lipid Composition of Chylomicrons of Different Svedberg Units of Flotation, J. Lipid Res. 11, 60–65.

    PubMed  CAS  Google Scholar 

  18. Harris, W.S., and Connor, W.E. (1980) The Effects of Salmon Oil upon Plasma Lipids, Lipoproteins, and Triglyceride Clearance, Trans. Assoc. Am. Physic. 43, 148–155.

    Google Scholar 

  19. Friedewald, W.T., Levy, R.I., and Fredrickson, D.S. (1972) Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge, Clin. Chem. 19, 499–502.

    Google Scholar 

  20. Karpe, F., Olivecrona, T., Hamsten, A., and Hultin, M. (1997) Chylomicron/Chylomicron Remnant Turnover in Humans: Evidence for Margination of Chylomicrons and Poor Conversion of Larger to Smaller Chylomicron Remnants, J. Lipid Res. 38, 949–961.

    PubMed  CAS  Google Scholar 

  21. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957), A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  22. Maranhão, R.C., Feres, M.C., Martins, M.T., Mesquita, C.H., Toffoletto, O., Vinagre, C.G.C., Gianinni, S.D., and Pileggi, F. (1996) Plasma Kinetics of a Chylomicron-Like Emulsion in Patients with Coronary Artery Disease, Atherosclerosis 126, 15–25.

    Article  PubMed  Google Scholar 

  23. Harris, W.S., Hustvedt, B.E., Hagen, E., Green, M.H., Lu, G., and Drevon, C.A. (1997) n−3 Fatty Acids and Chylomicron Metabolism in the Rat, J. Lipid Res. 38, 503–515.

    PubMed  CAS  Google Scholar 

  24. Hultin, M., Carneheim, C., Rosenqvist, K., and Olivecrona, T. (1995) Intravenous Lipid Emulsions: Removal Mechanisms as Compared to Chylomicrons, J. Lipid Res. 36, 2174–2184.

    PubMed  CAS  Google Scholar 

  25. Lutz, O., Meraihi, Z., Ferezou, J., Frey, A., Lutton, C., and Bach, A.C. (1990) The Mesophase of Parenteral Fat Emulsion Is Both Substrate and Inhibitor of Lipoprotein Lipase and Hepatic Lipase, Metab.: Clin. Exp. 39, 1225–1231.

    CAS  Google Scholar 

  26. Hajri, T., Ferezou, J., and Lutton, C. (1990) Effects of Intravenous Infusions of Commercial Fat Emulsions (Intralipid 10 or 20%) on Rat Plasma Lipoproteins: Phospholipids in Excess Are the Main Precursors of Lipoprotein-X-Like Particles, Biochim. Biophys. Acta 1047, 121–130.

    PubMed  CAS  Google Scholar 

  27. Quarfordt, S.H., and Goodman, D.S. (1966) Heterogeneity in the Rate of Plasma Clearance of Chylomicrons of Different Size, Biochim. Biophys. Acta 116, 382–385.

    PubMed  CAS  Google Scholar 

  28. Eckel, R.H., Goldberg, I.J., Steiner, L., Yost, T.J., and Paterniti, J.R., Jr. (1988) Plasma Lipolytic Activity: Relationship to Postheparin Lipolytic Activity and Evidence for Metabolic Regulation, Diabetes 37, 610–615.

    PubMed  CAS  Google Scholar 

  29. Brunzell, J.D., Hazzard, W.R., Porte, D., Jr., and Bierman, E.L. (1973) Evidence for a Common, Saturable, Triglyceride Removal Mechanism for Chylomicrons and Very Low Density Lipoproteins in Man, J. Clin. Invest. 52, 1578–1585.

    PubMed  CAS  Google Scholar 

  30. Karpe, F., Olivecrona, T., Walldius, G., and Hamsten, A. (1992) Lipoprotein Lipase in Plasma After an Oral Fat Load: Relation to Free Fatty Acids, J. Lipid Res. 33, 975–984.

    PubMed  CAS  Google Scholar 

  31. Peterson, J., Bihain, B.E., Bengtsson-Olivecrona, G., Deckelbaum, R.J., Carpentier, Y., and Olivecrona, T. (1990) Fatty Acid Control of Lipoprotein Lipase: A Link Between Energy Metabolism and Lipid Transport, Proc. Natl. Acad. Sci. USA 87, 909–913.

    Article  PubMed  CAS  Google Scholar 

  32. Mann, C.J., Khallou, J., Chevreuil, O., Troussard, A.A., Guermani, L.M., Launay, K., Delplanque, B., Yen, F.T., and Bihain, B.E. (1995) Mechanism of Activation and Functional Significance of the Lipolysis-Stimulated Receptor, Biochem. 34, 10421–10431.

    Article  CAS  Google Scholar 

  33. Lewis, B., Chait, A., February, A.W., and Mattock, M. (1973) Functional Overlap Between “Chylomicra” and “Very Low Density Lipoproteins” of Human Plasma During Alimentary Lipaemia, Atherosclerosis 17, 455–462.

    Article  PubMed  CAS  Google Scholar 

  34. Karpe, F., Steiner, A., Olivecrona, T., Carlson, L.A., and Hamsten, A. (1993) Metabolism of Triglyceride-Rich Lipoproteins During Alimentary Lipemia, J. Clin. Invest. 91, 748–759.

    Article  PubMed  CAS  Google Scholar 

  35. Schneeman, B.O., Kotite, L., Todd, K.M., and Havel, R.J. (1993) Relationships Between the Responses of Triglyceride-Rich Lipoproteins in Blood Plasma Containing Apolipoproteins B-48 and B-100 to a Fat-Containing Meal in Normolipidemic Humans, Proc. Natl. Acad. Sci. USA 90, 2069–2073.

    Article  PubMed  CAS  Google Scholar 

  36. Cohn, J.S., Johnson, E.J., Millar, J.S., Cohn, S.D., Milne, R.W., Marcel, Y.L., Russell, R.M., and Schaefer, E.J. (1993) Contribution of ApoB-48 and ApoB-100 Triglyceride-Rich Lipoproteins (TRL) to Postprandial Increases in the Plasma Concentration of TRL Triglycerides and Retinyl Esters, J. Lipid Res. 34, 2033–2040.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsoon Park.

About this article

Cite this article

Park, Y., Damron, B.D., Miles, J.M. et al. Measurement of human chylomicron triglyceride clearance with a labeled commercial lipid emulsion. Lipids 36, 115–120 (2001). https://doi.org/10.1007/s11745-001-0696-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-001-0696-6

Keywords

Navigation