Skip to main content
Log in

Cacao liquor polyphenols reduce oxidative stress without maintaining α-tocopherol levels in rats fed a vitamin E-deficient diet

  • Published:
Lipids

Abstract

The effect of crude polyphenols (CLP) from cacao liquor on vitamin F-deficient rats was examined. The CLP fraction contained 49.8% antioxidative polyphenols such as catechins and their oligomers. Supplementation of the vitamin E-deficient diet with CLP for 7 wk did not prevent the decrease in α-tocopherol levels in the liver, kidney, heart, brain, and plasma. The lipid peroxide levels in these tissues increased in the group fed the vitamin F-deficient diet compared with the control group. However, these changes were inhibited in a dose-dependent manner as a result of supplementation of the vitamin E-deficient diet with 0.25, 0.5, or 1.0% CLP. The lipid peroxide levels in plasma increased in the group fed the vitamin E-deficient diet. This change tended to be suppressed as a result of supplementation of the diet with CLP, but the difference was not significant. There was no evidence of absorption and distribution of CLP to the tissues; however, CLP intake resulted in a decrease in oxidative stress without maintaining vitamin E levels in the plasma and the tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CLI:

cacao liquor crude polyphenols

EC:

epicatechin

PMC:

2,2,5,7,8-pentamethyl-6-chromarol

TBARS:

thiobarbituric acid-reactive substances

VE:

vitamin E

References

  1. Hertog, M.G.L., Feskens, E.J.M., Hollman, P.C.H., Katan, M.B., and Kromhout, D. (1993) Dietary Antioxidant Flavonoids and Risk of Coronary Heart Disease: The Zutphen Elderly Study, Lancet 342, 1007–1011.

    Article  PubMed  CAS  Google Scholar 

  2. Hertog, M.G.L., Feskens, E.J.M., and Kromhout, D. (1996) Antioxidant Flavonols and Coronary Heart Disease Risk, Lancet 349, 699.

    Article  Google Scholar 

  3. Knekt, P., Jarvinen, R., Reunanen, A., and Maatela, J. (1996) Flavonoid Intake and Coronary Mortality in Finland: A Cohort Study. Br. Med. J. 12, 478–481.

    Google Scholar 

  4. Fukuda, Y., Nagao, M., Osawa, T., and Namiki, M. (1986) Contribution of Lignan Analogues to Antioxidative Activity of Refined Unroasted Sesame Seed Oil. J. Am. Oil Chem. Soc. 63, 1027–1031.

    Article  CAS  Google Scholar 

  5. Matsuzaki, T., and Hara, Y. (1985) Antioxidative Activity of Tea Leaf Catechins, Nippon Nogeikagaku Kaishi 59, 129–134.

    CAS  Google Scholar 

  6. Tebib, K., Rouanet, J.M., and Besançon, P. (1997) Antioxidative Effects of Dietary Polymeric Grape Seed Tannins in Tissues of Rats Fed a High Cholesterol-Vitamin E-Deficient Diet, Food Chem. 59, 135–141.

    Article  CAS  Google Scholar 

  7. Forsyth, W.G.C., and Roberts, J.B. (1960) Cacao Polyphenolic Substances 5. The Structure of Cacao Leucocyanidin, Biochem. J. 74, 374–378.

    PubMed  CAS  Google Scholar 

  8. Kim, H., and Keeney, P.G. (1984) (-)-Epicatechin Content in Fermented and Unfermented Cocoa Beans, J. Food. Sci. 49, 1090–1091.

    Article  CAS  Google Scholar 

  9. Porter, L.J., Ma, Z., and Chan, B.G. (1991) Cacao Procyanidins; Major Flavonoid Identification of Some Minor Metabolites, Phytochemistry 30, 1157–1663.

    Article  Google Scholar 

  10. Sanbongi, C., Osakabe, N., Takizawa, T., Gomi, S., and Osawa, T. (1998) Antioxidative Polyphenols Isolates from Theobroma cacao. J. Agric. Food Chem. 46, 454–457.

    Article  PubMed  CAS  Google Scholar 

  11. Osakabe, N., Yamagishi, M., Sanbongi, C., Natsume, M., Takizawa, T., and Osawa, T. (1998) The Antioxidative Substances in Cacao Liquor, J. Nutr. Sci. Vitaminol. 44, 313–321.

    PubMed  CAS  Google Scholar 

  12. Hamerstone, J.F., Lazarus, S.A., Mitchell, A.E., Rucker, R., and Schmitz, H.H. (1999) Identification of Procyanidins in Cocoa (Theobroma cacao) and Chocolate Using High-Performance Liquid Chromatography/Mass Spectrometry, J. Agric. Food Chem. 47, 490–496.

    Article  Google Scholar 

  13. Ueda, T., and Igarashi, O. (1987) New Solvent System for Extraction of Tocopherols from Biological Specimens for HPLC Determination and the Evaluation of 2,2,5,7,8-Pentamethyl-6-chromanol as an Internal Standard, J. Micronutr. Anal. 3, 185–198.

    CAS  Google Scholar 

  14. Price, M.P., and Butler, L.G. (1977) Rapid Visual Estimation and Spectrophotometric Determination of Tannin Content of Sorghum Grain, J. Agric. Food Chem. 25, 1268–1273.

    Article  CAS  Google Scholar 

  15. Ricardo da Silva, J.M., Rigaud, J., Cheynier, V., Chemina, A., and Moutounet, M. (1991) Procyanidin Dimers and Trimers from Grape Seeds, Phytochemistry 30, 1259–1264.

    Article  CAS  Google Scholar 

  16. Mino, M., Kitagawa, M., and Nakagawa, S. (1981) Changes of Alpha-Tocopherol Levels in Red Blood Cells and Plasma with Respect to Hemolysis Induced by Dialuric Acid in Vitamin E-Deficient Rats. J. Nutr. Sci. Vitaminol. 27, 199–207.

    PubMed  CAS  Google Scholar 

  17. Ohkawa, H., Ohishi, N., and Yagi, K. (1979) Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction, Anal. Biochem. 95, 351–358.

    Article  PubMed  CAS  Google Scholar 

  18. Lowry, O.H., Roschrough, N.J., and Randall, R.J. (1951) Protein Measurement with Folin Phenol Reagent, J. Biochem. 193, 265–275.

    CAS  Google Scholar 

  19. Piskula, M.K., and Terao, J. (1998) Accumulation of (-)-Epicatechin Metabolites in Rat Plasma After Oral Administration and Distribution of Conjugation Enzymes in Rat Tissues. J. Nutr. 128, 1172–1178.

    PubMed  CAS  Google Scholar 

  20. Chow, C.K. (1992) Oxidative Damage in the Red Cells of Vitamin E-Deficient Rats, Free Radical Res. Commun. 16, 247–258.

    CAS  Google Scholar 

  21. Yamashita, K., Nohara, Y., Katayama, K., and Namiki, M. (1992) Sesame Seed Lignans and γ-tocopherol Act Synergistically to Produce Vitamin E Activity in Rats, J. Nutr. 122, 2440–2446.

    PubMed  CAS  Google Scholar 

  22. Yamashita, K., Iizuka, Y., Imai, T., and Namiki, M. (1995) Sesame Seed and Its Lignans Produce Marked Enhancement of Vitamin E Activity in Rats Fed a Low α-Tocopherol Diet, Lipids 30, 1019–1028.

    PubMed  CAS  Google Scholar 

  23. Jenkins, K.J., Collins, F.W., and Hidiroglou, M. (1992) Efficacy of Various Flavonoids and Simple Phenolics in Prevention of Nutritional Myopathy in the Chick, Poultry Sci. 71, 1577–1580.

    CAS  Google Scholar 

  24. Jenkins, K.J., Hidiroglou, M., and Collins, W. (1993) Influence of Various Flavonoids and Simple Phenolics on Development of Exudative Diathesis in the Chick, J. Agric. Food Chem. 41, 441–445.

    Article  CAS  Google Scholar 

  25. Richelle, M., Tavazzi, I., Enslen, M., and Offord, E.A. (1999) Plasma Kinetics in Man of Epicatechin from Black Chocolate, Eur. J. Clin. Nutr. 53, 22–26.

    Article  PubMed  CAS  Google Scholar 

  26. Hollman, P.C., Tijburg, L.B.M., and Yang, C.S. (1997) Bioavailability of Flavonoids from Tea, Clin. Rev. Food. Sci. Nutr. 37, 719–738.

    Article  CAS  Google Scholar 

  27. Baba, S., Osakabe, N., Natsume, M., Yasuda, A., Takizawa, T., Nakamura, T., and Terao, J., Cacao Liquor Enhances Antioxidative Ability of Rat Plasma, Br. J. Nutr., in press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi Osakabe.

About this article

Cite this article

Yamagishi, M., Osakabe, N., Takizawa, T. et al. Cacao liquor polyphenols reduce oxidative stress without maintaining α-tocopherol levels in rats fed a vitamin E-deficient diet. Lipids 36, 67–71 (2001). https://doi.org/10.1007/s11745-001-0669-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-001-0669-9

Keywords

Navigation