Skip to main content
Log in

α- and γ-tocotrienols are metabolized to carboxyethyl-hydroxychroman derivatives and excreted in human urine

  • Published:
Lipids

Abstract

Limited information is available regarding metabolism of vitamin E forms, especially the tocotrienols. Carboxyethyl-hydroxychromans (α-and γ-CEHC) are human urinary metabolites of α- and γ-tocopherols, respectively. To evaluate whether tocotrienols are also metabolized and excreted as urinary CEHC, urine was monitored following tocotrienol supplementation. Complete (24 h) urine collections were obtained for 2 d prior to (baseline), the day of, and 2 d after human subjects (n=6) ingested tocotrienol supplements. The subjects consumed 125 mg γ-tocotrienyl acetate the first week, then the next week 500 mg; then 125 mg α-tocotrienyl acetate was administered the third week, followed by 500 mg the fourth week. Urinary α- and γ-CEHC were measured by high-performance liquid chromatography with electrochemical detection. Urinary γ-CEHC levels rose about four- to sixfold in response to the two doses of γ-tocotrienol and then returned to baseline the following day. Significant (P<0.0001) increases in urinary α-CEHC were observed only following ingestion of 500 mg α-tocotrienyl acetate. Typically, 1–2% of α-tocotrienyl acetates or 4–6% of γ-tocotrienyl acetates were recovered as their respective urinary CEHC metabolites. A γ-CEHC excretion time course showed an increase in urinary γ-CEHC at 6 h and a peak at 9 h following ingestion of 125 mg γ-tocotrienyl acetate. In summary, tocotrienols, like tocopherols, are metabolized to CEHC; however, the quantities excreted in human urine are small in relation to dose size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CEHC:

carboxyethyl-hydroxychroman

HPLC:

high-performance liquid chromatography

α-T3:

α-tocotrienol

α-T3:

γ-tocotrienol

α-TTP:

α-tocopherol transfer protein

References

  1. Dial, S., and Eitenmiller, R.R. (1995) Tocopherols and Tocotrienols in Key Foods in the U.S. Deit, in Nutrition, Lipids, Health and Disease (Ong, A.S.H., Niki, E., and Packer, L., eds.) pp. 327–342, AOCS Press, Champaign.

    Google Scholar 

  2. Serbinova, E., Kagan, V., Han, D., and Packer, L. (1991) Free Radical Recycling and Intermembrane Mobility in the Antioxidation Properties of Alpha-Tocopherol and Alpha Tocotrienol, Free Radical Biol. Med. 10, 263–275.

    Article  CAS  Google Scholar 

  3. Suzuki, Y.J., Tsuchiya, M., Wassall, S.R., Choo, Y.M., Govil, G., Kagan, V.E., and Packer, L. (1993) Structural and Dynamic Membrane Properties of α-Tocopherol and α-Tocotrienol: Implications to the Molecular Mechanism of Their Antioxidant Potency, Biochemistry 32, 10692–10699.

    Article  PubMed  CAS  Google Scholar 

  4. Parker, R.A., Pearce, B.C., Clark, R.W., Gordon, D.A., and Wright, J.J.K. (1993) Tocotrienols Regulate Cholesterol Production in Mammalian Cells by Post-Transcriptional Suppression of 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase, J. Biol. Chem. 268, 11230–11238.

    PubMed  CAS  Google Scholar 

  5. Hayes, K.C., Pronczuk, A., and Liang, J.S. (1993) Differences in the Plasma Transport and Tissue Concentrations of Tocopherols and Tocotrienols: Observations in Humans and Hamsters, Proc. Soc. Exp. Biol. Med. 202, 353–359.

    PubMed  CAS  Google Scholar 

  6. O'Byrne, D., Grundy, S., Packer, L., Devaraj, S., Baldenius, K., Hoppe, K., Kraemer, K., Jialal, I., and Traber, M.G. (2000) Studies of LDL Oxidation Following Alpha-, Gamma- or Delta-Tocotrienyl Acetate Supplementation in Hypercholesterolemic Humans, Free Radical Biol. Med. 29, 834–845.

    Article  Google Scholar 

  7. Hosomi, A., Arita, M., Sato, Y., Kiyose, C., Ueda, T., Igarashi, O., Arai, H., and Inoue, K. (1997) Affinity for Alpha-Tocopherol Transfer Protein as a Determinant of the Biological Activities of Vitamin E Analogs, FEBS Lett. 409, 105–108.

    Article  PubMed  CAS  Google Scholar 

  8. Bunyan, J., McHale, D., Green, J., and Marcinkiewicz, S. (1961) Biological Potencies of ε- and ζ1-Tocopherol and 5-Methyltocol, Br. J. Nutr. 15, 253–257.

    Article  PubMed  CAS  Google Scholar 

  9. Schultz, M., Leist, M., Petrizika, M., Gassmann, B., and Brigelius-Flohé, R. (1995) Novel Urinary Metabolite of α-Tocopherol, 2,5,7,8-Tetramethyl-2(2′-carboxyethyl)-6-hydroxychroman, as an Indicator of an Adequate Vitamin E Supply? Am. J. Clin. Nutr. 62 (suppl.), 1527S-1534S.

    PubMed  CAS  Google Scholar 

  10. Swanson, J.E., Ben, R., Burton, G.W., and Parker, R.S. (1998) Urinary Excretion of 2,7,8-Trimethyl-2-(beta-carboxyethyl)-6-hydroxychroman Is a Major Route of Elimination of Gamma-Tocopherol in Humans, J. Lipid Res. 40, 665–671.

    Google Scholar 

  11. Traber, M.G., Elsner, A., and Brigelius-Flohé, R. (1998) Synthetic as Compared with Natural Vitamin E Is Preferentially Excreted as α-CEHC in Human Urine: Studies Using Deuterated α-Tocopheryl Acetates, FEBS Lett. 437, 145–148.

    Article  PubMed  CAS  Google Scholar 

  12. Lodge, J.K., Traber, M.G., Elsner, E., and Brigelius-Flohé, R. (2000) A Rapid Method for the Extraction and Determination of Vitamin E Metabolites in Human Urine, J. Lipid Res. 41, 148–154.

    PubMed  CAS  Google Scholar 

  13. Wechter, W.J., Kantoci, D., Murray, E.D., Jr., D'Amico, D.C., Jung, M.E., and Wang, W.-H. (1996) A New Endogenous Natriuretic Factor: LLU-α, Proc. Natl. Acad. Sci. USA 93, 6002–6007.

    Article  PubMed  CAS  Google Scholar 

  14. Kelleher, J., and Losowsky, M.S. (1970) The Absorption of α-Tocopherol in Man, Br. J. Nutr. 24, 1033–1047.

    Article  PubMed  CAS  Google Scholar 

  15. Blomstrand, R., and Forsgren, L. (1968) Labelled Tocopherols in Man, Int. J. Vitam. Nutr. Res. 38, 328–344.

    CAS  Google Scholar 

  16. Ikeda, I., Imasato, Y., Sasaki, E., and Sugano, M. (1996) Lymphatic Transport of Alpha- Gamma- and Delta-Tocotrienols and Alpha-Tocopherol in Rats, Int. J. Vitam. Nutr. Res. 66, 217–221.

    PubMed  CAS  Google Scholar 

  17. Traber, M.G., and Kayden, H.J. (1989) Preferential Incorporation of α-Tocopherol vs. γ-Tocopherol in Human Lipoproteins, Am. J. Clin. Nutr. 49, 517–526.

    PubMed  CAS  Google Scholar 

  18. Traber, M.G., Ramakrishnan, R., and Kayden, K.J. (1994) Human Plasma Vitamin E Kinetics Demonstrate Rapid Recycling of Plasma RRR-α-Tocopherol, Proc. Natl. Acad. Sci. USA 91, 10005–10008.

    Article  PubMed  CAS  Google Scholar 

  19. Traber, M.G., Rader, D., Acuff, R.V., Ramakrishnan, R., Brewer, H.B., and Kayden, H.J. (1998) Vitamin E Dose-Response Studies in Humans with Use of Deuterated RRR-α-Tocopherol, Am. J. Clin. Nutr. 68, 847–853.

    PubMed  CAS  Google Scholar 

  20. Mustacich, D.J., Shields, J., Horton, R.A., Brown, M.K., and Reed, D.J. (1998) Biliary Secretion of α-Tocopherol and the Role of the mdr2 p-Glycoprotein in Rats and Mice, Arch. Biochem. Biophys. 350, 183–192.

    Article  PubMed  CAS  Google Scholar 

  21. Schuelke, M., Elsner, A., Finckh, B., Kohlschutter, A., Hubner, C., and Brigelius-Flohe, R. (2000) Urinary α-Tocopherol Metabolites in α-Tocopherol Transfer Protein-Deficient Patients, J. Lipid Res. 41, 1543–1551.

    PubMed  CAS  Google Scholar 

  22. Tan, D., Khor, H.T., Low, W.H., Ali, A., and Gapor, A. (1991) Effect of a Palm-Oil-Vitamin E Concentrate on the Serum and Lipoprotein Lipids in Humans, Am. J. Clin. Nutr. 53, 1027S-1030S.

    PubMed  CAS  Google Scholar 

  23. Qureshi, A.A., Qureshi, N., Wright, J.J.K., Shen, Z., Kramer, G., Gapor, A., Chong, Y.H., DeWitt, G., Ong, A.S.H., Peterson, D.M., and Bradlow, B.A. (1991) Lowering of Serum Cholesterol in Hypercholesterolemic Humans by Tocotrienols (palmvitee), Am. J. Clin. Nutr. 53, 1021S-1026S.

    PubMed  CAS  Google Scholar 

  24. Qureshi, A.A., Bradlow, B.A., Brace, L., Manganello, J., Peterson, D.M., Pearce, B.C., Wright, J.J., Gapor, A., and Elson, C.E. (1995) Response of Hypercholesterolemic Subjects to Administration of Tocotrienols, Lipids 30, 1171–1177.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Lodge, J.K., Ridlington, J., Leonard, S. et al. α- and γ-tocotrienols are metabolized to carboxyethyl-hydroxychroman derivatives and excreted in human urine. Lipids 36, 43–48 (2001). https://doi.org/10.1007/s11745-001-0666-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-001-0666-z

Keywords

Navigation