Skip to main content
Log in

Protective effect of phytic acid hydrolysis products on iron-induced lipid peroxidation of liposomal membranes

  • Communication
  • Published:
Lipids

Abstract

Beneficial effects of dietary phytic acid (myo-inositol hexaphosphate; IP6) have often been explained by its strong iron ion-chelating ability, which possibly suppresses iron ion-induced oxidative damage in the gastrointestinal tract. Because phytic acid is hydrolyzed during digestion, this work aimed to know whether its hydrolysis products (IP2′ IP3′, IP4′ and IP5) could still prevent iron ion-induced lipid peroxidation. Studies using liposomal membranes demonstrated that hydrolysis products containing three or more phosphate groups are able to inhibit iron ion-induced lipid peroxidation although their effectiveness decreased with dephosphorylation. Similarly, they also prevented iron ion-induced decomposition of phosphatidylcholine hydroperoxide. These results demonstrate that intermediate products of phytic acid hydrolysis still possess iron ion-chelating ability, and thus they can probably prevent iron ion-induced lipid peroxidation in biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Desferal:

Desferrioxamine B methanesulfonate

EYPC:

egg yolk phosphatidylcholine

HPLC:

high-performance liquid chromatography

IP6′ :

myo-inositol hexakisphosphate

IP5′ :

myo-inositol pentakisphosphate

IP4′ :

myo-inositol tetrakisphosphate

IP3′ :

myo-inositol trisphosphate

IP2′ :

myo-inositol bisphosphate

PC-OOH:

phosphatidylcholine hydroperoxides

TBARS:

thiobarbituric acid-reactive substances

References

  1. Graf, E., and Empson, K.L. (1987) Phytic Acid. A Natural Antioxidant, J. Biol. Chem. 262, 11647–11650.

    PubMed  CAS  Google Scholar 

  2. Graf, E., Mahoney, J.R., Bryant, R.G., and Eaton, J.W. (1990) Iron-Catalyzed Hydroxyl Radical Formation: Stringent Requirements for Free Iron Coordination Site, J. Biol. Chem. 256, 3620–3624.

    Google Scholar 

  3. Graf, E., and Eaton, J.W. (1990) Antioxidant Functions of Phytic Acid, Free Radical Biol. Med. 8, 61–69.

    Article  CAS  Google Scholar 

  4. Halliwell B., and Gutteridge, J.M.C. (1990) Role of Free Radicals and Catalytic Metal Ions in Human Disease: An Overview, Methods Enzymol. 186, 1–85.

    PubMed  CAS  Google Scholar 

  5. Babbs, C.F. (1990) Free Radical and the Ethiology of Colon Cancer, Free Radical Biol. Med. 8, 191–200.

    Article  CAS  Google Scholar 

  6. Younes, M., Trepkau, H.D., and Siegers, C.P. (1990) Enhancement by Dietary Iron of Lipid Peroxidation in Mouse Colon, Res. Commun. Chem. Path. Pharm. 70, 349–354.

    PubMed  CAS  Google Scholar 

  7. Nelson, R.L. (1992) Dietary Iron and Colorectal Cancer Risk, Free Radical Biol. Med. 12, 161–168.

    Article  CAS  Google Scholar 

  8. Graf, E., and Eaton, J.W. (1993) Suppression of Colonic Cancer by Dietary Phytic Acid, Nutr. Cancer 19, 11–19

    Article  PubMed  CAS  Google Scholar 

  9. Sandberg, A.-S., and Andersson, H. (1988) Effect of Dietary Phytase on the Digestion of Phytate in the Stomach and Small Intestine of Humans, J. Nutr. 118, 469–473.

    PubMed  CAS  Google Scholar 

  10. Iqbal, T.H., Lewis, K.O., and Cooper, B.T. (1994) Phytase Activity in the Human and Rat Small Intestine, Gut 35, 1233–1236.

    PubMed  CAS  Google Scholar 

  11. Shinoda, S., Kuwata, G., Iwatsuki, S., Imai, M., and Arai, S. (1995) Effect of Inositol Phosphates (products from phytate) on Mineral Availability in Rats. J. Jpn. Soc. Nutr. Food Sci. 48, 371–378.

    CAS  Google Scholar 

  12. Baba, Y., Yoza, N., and Ohashi, S. (1985) Effect of Column Temperature on High-Performance Liquid Chromatographic Behaviour of Inorganic Polyphosphartes. Isocratic Ion-Exchange Chromatography, J. Chromatogr. 348, 27–37.

    Article  CAS  Google Scholar 

  13. Arai, H., Mohri, S., Suzuki, T., Takama, K., and Terao, J. (1997) Coulometric Electrochemical Detection of Phospholipid Hydroperoxides by High-Performance Liquid Chromatography, Biosci. Biotech. Biochem. 61, 191–193.

    Article  CAS  Google Scholar 

  14. Terao, J., Nagao, A., Park, D.-K., and Boey, P.L. (1992) Lipid Hydroperoxide Assay for Antioxidative Activity of Carotenoids, Methods Enzymol. 213, 454–460.

    Article  CAS  Google Scholar 

  15. Terao, J., Piskula, M., and Yao, Q. (1994) Protective Effect of Epicatechin, Epicatechin Gallate, and Quercetin on Lipid Peroxidation in Phospholipid Bilayers, Arch. Biochem. Biophys. 308, 278–284.

    Article  PubMed  CAS  Google Scholar 

  16. Uchiyama, M., and Mihara, M. (1978) Determination of Malon-aldehyde Precursor in Tissues by Thiobarbituric Acid Test, Anal. Biochem. 86, 271–278.

    Article  PubMed  CAS  Google Scholar 

  17. Hawkins, P.T., Poyner, D.R., Jackson, T.R., Letcher, A.J., Lander, D.A., and Irvine, R.F. (1993) Inhibition of Iron-Catalyzed Hydroxyl Radical Formation by Inositol Polyphosphates: A Possible Physiological Function for Myo-Inositol Hexakisphosphate, Biochem. J. 294, 929–934.

    PubMed  CAS  Google Scholar 

  18. Phylippy, B.Q., and Graf, E. (1997) Antioxidant Functions of Inositol 1,2,3-Trisphosphate and Inositol 1,2,3,6-Tetrakisphosphate, Free Radical Biol. Med. 22, 939–946.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Miyamoto, S., Kuwata, G., Imai, M. et al. Protective effect of phytic acid hydrolysis products on iron-induced lipid peroxidation of liposomal membranes. Lipids 35, 1411–1414 (2000). https://doi.org/10.1007/s11745-000-0659-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-000-0659-y

Keywords

Navigation