Skip to main content
Log in

Lipid class composition of the protozoan Perkinsus marinus, an oyster parasite, and its metabolism of a fluorescent phosphatidylcholine analog

  • Published:
Lipids

Abstract

Perkinsus marinus is one of two important protozoan parasites of the eastern oyster, Crassostrea virginica. The other is Haplosporidium nelsoni. Lipids extracted from 7-d-old in vitro cultured P. marinus meronts, incubated with fluorescent-labeled phosphatidylcholine (FL PC) and nonincubated P. marinus meronts, were analyzed by a high-performance liquid chromatography (HPLC) system equipped with a diol phase column, in combination with thin-layer chromatography coupled with a flameionization detector (TLC/FID), and high-performance thin-layer chromatography (HPTLC). Various polar and neutral lipid classes were separated by HPLC using a two-gradient solvent system. Five polar lipid classes—phosphatidylcholine (PC), phosphatidylethanolamine (PE), cardiolipin (CL), sphingomyelin (SM), and phosphatidylserine (PS)—were identified from P. marinus extracts. Four neutral lipid classes—triacylglycerol (TAG), steryl ester (SE), cholesterol (CHO), and fatty alcohol—were distinguished. TLC/FID analysis of meront lipids showed that the weight percentages of PC, PE, CL, SM, PS/PI, TAG, SE, and CHO were 21, 10.7, 4, 2.3, 4.3, 48.7, 7.8, and 1.2%, respectively. HPLC and HPTLC analyses revealed the presence of two SM and PS isomers in P. marinus extracts. Perkinsus marinus effectively incorporated FL PC acquired from the medium and metabolized it to various components (i.e., free fatty acid, monoacylglycerol, diacylglycerol, TAG, PE, and CL). Uptake and interconversion of FL PC in P. marinus meronts increased with time. After 48 h the total uptake of fluorescence (FL) was 28.9% of the FL PC added to the medium, and 43% of the incorporated FL resided in TAG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Bodipy:

4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene

CER:

ceramide

CHE:

cholesteryl ester

CHO:

cholesterol

CL:

cardiolipin

DAG:

diacylglycerol

FA:

fatty acid

FAME:

fatty acid methyl ester

FFA:

free fatty acids

FH:

fatty alcohol

FL:

fluorescent-labeled

FTM:

fluid thioglycollate medium

HPLC:

high-performance liquid chromatography

HPTLC:

high-performance thin-layer chromatography

LPC:

lysophosphatidylcholine

MAG:

monoacylglycerol

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PG:

phosphatidylglycerol

PI:

phosphatidylinositol

PS:

phosphatidylserine

SE:

steryl ester

SM:

sphingomyelin

TAG:

triacylglycerol

TLC-FID:

thin-layer chromatography coupled with a flame-ionization detector

UV:

ultraviolet

YRW:

York river water

References

  1. Levine, N.D. (1978) Perkinsus gen. n. and Other New Taxa in the Protozoan Phylum Apicomplexa, J. Parasitol. 64, 549.

    Article  Google Scholar 

  2. Mackin, J.G., Owen, H.M., and Collier, A. (1950) Preliminary Note on the Occurrence of a New Protistan Parasite, Dermocystidium marinum n. sp., in Crassostrea virginica (Gmelin), Science 111, 328–329.

    Article  PubMed  Google Scholar 

  3. Chu, F.-L.E. (1996) Laboratory Investigations of Susceptibility, Infectivity and Transmission of Perkinsus marinus in Oysters, J. Shellfish. Res. 15, 57–66.

    Google Scholar 

  4. Perkins, F.O. (1966) Life History Studies of Dermocystidium marinum, an Oyster Pathogen, Ph.D. Thesis, Florida State University, Tallahassee, 273 pp.

    Google Scholar 

  5. Perkins, F.O. (1988) Structure of Protistan Parasites Found in Bivalve Molluscs, Am. Fish. Soc. Spec. Publ. 18, 93–111

    Google Scholar 

  6. La Peyre, J.F., Faisal, M., and Burreson, E.M. (1993) In vitro Propagation of the Protozoan Perkinsus marinus, a Pathogen of the Eastern Oyster, Crassostrea virginica, J. Euk. Microbiol. 40, 304–310.

    Google Scholar 

  7. Gauthier, J.D., and Vasta, G.R. (1993) Continuous in vitro Culture of the Eastern Oyster Parasite Perkinsus marinus, J. Invert. Pathol. 62, 321–323.

    Article  Google Scholar 

  8. Kleinschuster, S.J., and Swink, S.L. (1993) A Simple Method for the in vitro Culture of Perkinsus marinus, Nautilus 107, 76–78

    Google Scholar 

  9. Vial, H.J., and Ancelin, M.-L. (1992) Malaria Lipids, an Overview, in Subcellular Biochemistry, Intracellular Parasites (Avila, J.L., and Harris, J.R., eds.), Vol. 18, pp. 259–306, Plenum Press, New York.

    Google Scholar 

  10. Vial, H.J., and Ancelin, M.-L. (1998) Malaria Lipids, in Malaria: Parasite Biology, Pathogenesis, and Protection (Sherman, I.W., ed.), pp. 159–175, ASM Press, Washington, DC.

    Google Scholar 

  11. Smith, T.N., Brooks, T.J., and Lockard, V.G. (1970) In Vitro Studies on Cholesterol Metabolism in the Blood Fluke Schistosoma mansoni, Lipids 5, 854–856.

    PubMed  CAS  Google Scholar 

  12. Meyer, F., Meyer, H., and Bueding, E. (1970) Lipid Metabolism in the Parasitic and Free-living Flatworms. Schistosoma mansoni and Dugesia dorotocephala, Biochim. Biophys. Acta 210, 257–265.

    PubMed  CAS  Google Scholar 

  13. Furlong, S.T., Thibault, K.S., Morbelli, L.M., Quinn, J.J., and Rogers, R.A. (1995) Uptake and Compartmentalization of Fluorescent Lipid Analogs in Larval Schistosoma mansoni, J. Lipid Res. 36, 1–12.

    PubMed  CAS  Google Scholar 

  14. Brouwers, J.F.H.M., Smeenk, I.M.B., van Golde, L.M.G., and Tielens, A.G.M. (1997) The Incorporation, Modification and Turnover of Fatty Acids in Adult Schistosoma mansoni, Mol. Biochem. Parasitol. 88, 175–185.

    Article  PubMed  CAS  Google Scholar 

  15. Brouwers, J.F.H.M., Van Hellemod, J.J., Van Golde, L.M.G., and Tielens, A.G.M. (1998) Ether Lipids and Their Possible Physiological Function in Adult Schistosoma mansoni, Mol. Biochem. Parasitol. 96, 49–58.

    Article  PubMed  CAS  Google Scholar 

  16. Redman, C.A., Kennington, S., Spathopoulou, T., and Kusel, J.R. (1997) Interconversion of Sphingomyelin and Ceramide in Adult Schistosoma mansoni, Mol. Biochem. Parasitol. 90, 145–153.

    Article  PubMed  CAS  Google Scholar 

  17. Coppens, I., Levade, T., and Courtoy, P.J. (1995) Host Plasma Low Density Lipoproteins Particles as a Essential Source of Lipids for the Bloodstream Forms of Trypanosoma brucei, J. Biol. Chem. 270, 5736–5741.

    Article  PubMed  CAS  Google Scholar 

  18. Lujan, H.D., Mowatt, M.R., and Nash, T.E. (1996) Lipid Requirements and Lipid Uptake by Giardia lamblia Trophozoites in Culture, J. Euk. Microbiol. 43, 237–242.

    PubMed  CAS  Google Scholar 

  19. Ellis, J.E., Wyder, M.A., Jarroll, E.L., and Kaneshiro, E.S. (1996) Changes in Lipid Composition During in vitro Encystation and Fatty Acid Desaturase Activity of Giardia lamblia, Mol. Biochem. Parasitol. 81, 13–25.

    Article  PubMed  CAS  Google Scholar 

  20. Christie, W.W. (1987) High-Performance Liquid Chromatography and Lipids, pp. 87–132, Pergamon Press, Oxford.

    Google Scholar 

  21. Christie, W.W. (1986) Separation of Lipid Classes by High-Performance Liquid Chromatography with “Mass Detector”, J. Chromatog. 361, 396–399.

    Article  CAS  Google Scholar 

  22. Breton, L., Serkiz, B., Volland, J.-P., and Lepagnol, J. (1989) A New Rapid Method for Phospholipid Separation by High-Performance Liquid Chromatography with Light-scattering Detection, J. Chromatog. B 497, 243–249.

    CAS  Google Scholar 

  23. Lutzke, B.S., and Braughler, J.M. (1990) An Improved Method for the Identification and Quantification of Biological Lipids by HPLC Using Laser Light-Scattering Detection, J. Lipid Res. 31, 2127–2130.

    PubMed  CAS  Google Scholar 

  24. Juaneda, P., Rocquelin, G., and Astorg, P.O. (1990) Separation and Quantification of Heart and Liver Phospholipid Classes by High-Performance Liquid Chromatography Using a New Light-Scattering Detector, Lipids 25, 756–759.

    PubMed  CAS  Google Scholar 

  25. Letter, W.S. (1992) A Rapid Method for Phospholipid Class Separation by HPLC Using an Evaporative Light-Scattering Detector, J. Liq. Chromatogr. 15, 253–266.

    CAS  Google Scholar 

  26. Bunger, H., and Pison, U. (1995) Quantitative Analysis of Pulmonary Surfactant Phospholipids by High-Performance Liquid Chromatography and Light-Scattering Detection, J. Chromatogr. B 672, 25–31.

    CAS  Google Scholar 

  27. Kiuchi, K., Ohta, T., and Ebine, H. (1975) High-Speed Liquid Chromatography Separation of Glycerides, Fatty Acids and Sterols, J. Chromatogr. Sci. 13, 461–466.

    PubMed  CAS  Google Scholar 

  28. Aitzetmüller, K., and Koch, J. (1978) Liquid Chromatography Analysis of Serum Lipids and Other Lipids of Medical Interest, J. Chromatogr. B 145, 195–202.

    Google Scholar 

  29. Gillan, F.T., and Johns, R.B. (1983) Normal-Phase HPLC Analysis of Microbial Carotenoids and Neutral Lipids, J. Chromatogr. Sci. 21, 34–39.

    PubMed  CAS  Google Scholar 

  30. Palmer, D.N., Anderson, M.A., and Jolly, R.D. (1984) Separation of Some Neutral Lipids by Normal-Phase High-Performance Liquid Chromatography on a Cyanopropyl Column: Ubiquinone, Dolichol, and Cholesterol Levels in Sheep Liver, Anal. Biochem. 140, 315–319.

    Article  PubMed  CAS  Google Scholar 

  31. Lapin, B.P., Pisareva, N.A., Rubtsova, T.E., and Jakevich, M.L. (1986) Separation of Lipophilic Fractions by High-Performance Liquid Chromatography, J. Chromatogr. 365, 229–235.

    Article  CAS  Google Scholar 

  32. Carunchio, V., Nicoletti, I., Frezza, L., and Sinibaldi, M. (1984) High-Performance Liquid Chromatography Separation of Phospholipids on Chemically Bonded Silica Gel Part 1, Ann. Chim. (Rome) 74, 331–339.

    CAS  Google Scholar 

  33. Mallet, A.I., Cunningham, F.M., and Daniel, R. (1984) Rapid Isocratic High-Performance Liquid Chromatographic Purification of Platelet Activating Factor (PAF) and 1 Lyso-PAF from Human Skin, J. Chromatogr. B 309, 160–164.

    CAS  Google Scholar 

  34. Andrews, A.G. (1984) Estimation of Amniotic Fluid Phospholipids by High-Performance Liquid Chromatography, J. Chromatogr. B 336, 139–150.

    CAS  Google Scholar 

  35. Kuhnz, W., Zimmermann, B., and Nau, H. (1985) Improved Separation of Phospholipids by High-Performance Liquid Chromatography, J. Chromatogr. B 344, 309–312.

    CAS  Google Scholar 

  36. Soudant, P., Marty, Y., Moal, J., and Samain, J.-F. (1995) Separation of Major Polar Lipids in Pecten maximus by High-Performance Liquid Chromatography and Subsequent Determination of Their Fatty Acids Using Gas Chromatography, J. Chromatogr. B 673, 15–26.

    CAS  Google Scholar 

  37. Silversand, C., and Haux, C. (1997) Improved High-Performance Liquid Chromatographic Method for the Separation and Quantification of Lipid Classes: Application to Fish Lipids, J. Chromatogr. B 703, 7–14.

    CAS  Google Scholar 

  38. Schlager, S.I., and Jordi, H. (1981) Separation of Cellular Phospholipid, Neutral Lipid and Cholesterol by High-Pressure Liquid Chromatography, Biochim. Biophys. Acta 665, 355–358.

    PubMed  CAS  Google Scholar 

  39. Yandrasitz, J.R., Berry, G., and Segal, S. (1981) High-Performance Liquid Chromatography of Phospholipids with UV Detection: Optimization of Separations on Silica, J. Chromatogr. B 225, 319–328.

    CAS  Google Scholar 

  40. Dugan, L.L., Demediuk, L., Pendley, C.E. II, and Horrocks, L.A., (1986) Separation of Phospholipids by High-Performance Liquid Chromatography: All Major Classes, Including Ethanolamine and Choline Plasmalogens, and Most Minor Classes, Including Lysophosphatidylethanolamine. J. Chromatogr. B 378, 317–327.

    CAS  Google Scholar 

  41. Juaneda, P., and Rocquelin, G. (1986) Complete Separation of Phospholipids from Human Heart Combining two HPLC Methods, Lipids 21, 239–240.

    PubMed  CAS  Google Scholar 

  42. Wiley, M.G., Pretakiewicz, M., Takahashi, M., and Lowenstein, J.M. (1992) An Extended Method for Separating and Quantitating Molecular Species of Phospholipids, Lipids 27, 295–301.

    PubMed  CAS  Google Scholar 

  43. Chu, F.-L.E., Soudant, P., Volety, A.K., and Huang, Y. (2000) Perkinsus marinus: Uptake and Interconversion of Fluorescent Lipid Analogs in the Parasite of the Oyster, Crassostrea virginica, Exp. Parasitol. 95, 240–251.

    Article  PubMed  CAS  Google Scholar 

  44. Bligh, E.G., and Dyer, W.J. (1959) A Rapid Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  45. Metcalfe, L.D., and Schmitz, A.A. (1961) The Rapid Preparation of Fatty Acid Esters for Gas Chromatography Analysis, Anal. Chem. 33, 363–364.

    Article  CAS  Google Scholar 

  46. Marty, Y., Delaunay, F., Moal, J., and Samain, J.F. (1992) Change in the Fatty Acid Composition of Pecten maximus (L.), J. Exp. Mar. Biol. Ecol. 163, 221–234.

    Article  CAS  Google Scholar 

  47. Chu, F.-L.E., and Ozkizilcik, S. (1995) Lipid and Fatty Acid Composition of Striped Bass (Morone saxatilis) Larvae During Development, Comp. Biochem. Physiol. 111B, 665–674.

    CAS  Google Scholar 

  48. Olsen, R.E., and Henderson, R.J. (1989) The Rapid Analysis of Neutral and Polar Marine Lipids using Double Development HPTLC and Scanning Densitometry, J. Exp. Mar. Biol. Ecol. 129, 189–197.

    Article  CAS  Google Scholar 

  49. Christie, W.W. (1982) Lipid Analysis, 2nd edn., pp. 107–134, Pergamon Press, Oxford.

    Google Scholar 

  50. Sherman, I.W. (1979) Biochemistry of Plasmodium (malaria parasites), Microbiol. Rev. 43, 453–495.

    PubMed  CAS  Google Scholar 

  51. Beach, D.H., Holz, G.G., Jr., and Anekwe, G.E. (1979) Lipid of Leishmania Promastigotes, J. Parasitol. 65, 203–216.

    Article  CAS  Google Scholar 

  52. Smith, J.D. (1993) Phospholipid Biosynthesis in Protozoa, Prog. Lipid Res. 32, 47–60.

    Article  PubMed  CAS  Google Scholar 

  53. Gurr, M.T., and Harwood, J.L. (1991) Lipid Biochemistry, An Introduction, 4th edn., pp. 295–337, Chapman and Hall, New York.

    Google Scholar 

  54. Mitschler, R.R., Welti, R., and Upton, S.J. (1994) A Comparative Study of Lipid Composition of Cryptosporidium parvum (Apicomplexan) and Madin-Darby Bovine Kidneys Cells, J. Euk. Microbiol. 41, 8–12.

    PubMed  CAS  Google Scholar 

  55. Stevens, T.L., Gibson, G.R., Adam, R., Maier, J., Allison-Ennis, M., and Das, S. (1997) Uptake and Cellular Localization of Exogenous Lipids by Giardia lamblia, a Primitive Eukaryote, Exp. Parasitol. 86, 133–143

    Article  PubMed  CAS  Google Scholar 

  56. Dixon, H., and Williamson, J. (1970) The Lipid Composition of Blood and Culture Forms of Trypanosoma lewisi and Trypanosoma rhodesiense Compared with That of Their Environment, Comp. Biochem. Physiol. 33, 111–128.

    Article  PubMed  CAS  Google Scholar 

  57. Vial, H.J., Thuet, M.J., and Philippot, J.R. (1982) Phospholipid Biosynthesis in Synchronous Plasmodium falciparum Cultures, J. Protozool. 29, 258–263.

    PubMed  CAS  Google Scholar 

  58. Vial, H.J., Ancelin, M.-L., Thuet, M.J., and Philippot, J.R. (1989) Phospholipid Metabolism in Plasmodium-Infected Erythrocytes: Guidelines for Further Studies Using Radioactive Precursor Incorporations, Parasitology 98, 351–357.

    Article  PubMed  CAS  Google Scholar 

  59. Kasurinen, J. (1992) A Novel Fluorescent Fatty Acid, 5-Methyl-BDY-dodecanoic Acid, Is a Potential Probe in Lipid Transport Studies by Incorporating Selectively to Lipids of BHK cells, Biochem. Biophys. Res. Comm. 187, 1594–1601.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F.-L. E. Chu.

About this article

Cite this article

Soudant, P., Chu, FL.E. & Marty, Y. Lipid class composition of the protozoan Perkinsus marinus, an oyster parasite, and its metabolism of a fluorescent phosphatidylcholine analog. Lipids 35, 1387–1396 (2000). https://doi.org/10.1007/s11745-000-0656-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-000-0656-1

Keywords

Navigation