Skip to main content
Log in

Purification, characterization, and molecular cloning of group I phospholipases A2 from the gills of the red sea bream, Pagrus major

  • Published:
Lipids

Abstract

Phospholipase A2 (PLA2) activity was investigated in various tissues of male and female red sea bream. In both male and female fishes, the specific activity of PLA2 in the gills was 70 times higher than that in other tissues, such as the adipose tissue, intestine, and hepatopancreas. Therefore, we tried to purify PLA2 from the gill filaments of red sea bream to near homogeneity by sequential chromatography on Q-Sepharose Fast Flow, Butyl-Cellulofine, and DEAE-Sepharose Fast Flow columns, and by reversed-phase high-performance liquid chromatography. Two minor and one major PLA2, tentatively named G-1, G-2 and G-3 PLA2, were purified, and all showed a single band with an apparent molecular mass of approximately 15 kDa by sodium dodecylsulfate-polyacrylamide gel electrophoresis. The exact molecular mass values of G-1, G-2, and G-3 PLA2 were 14,040, 14,040 and 14,005 Da, respectively. G-1, G-2, and G-3 PLA2 had a Cys 11 and were all identical in N-terminal amino acid sequences from Ala-1 to Glu-56. A full-length cDNA encoding G-3 PLA2 was cloned by reverse transcriptase-polymerase chain reaction and rapid amplification of cDNA ends methods, and G-3 PLA2 was found to be classified to group IB PLA2 from the deduced amino acid sequence. G-1, G-2, and G-3 PLA2 had a pH optimum in an alkaline region at around pH 9–10 and required Ca2+ essentially for enzyme activity, using a mixed-micellar phosphatidylcholine substrate with sodium cholate. These results demonstrate that three group 1 PLA2, G-1, G-2, and G-3 PLA2, are expressed in the gill filaments of red sea bream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

p-APMSF:

p-amidinophenylmethylsulfonyl fluoride

p-BPB:

p-bromophenacyl bromide

CHAPS:

3-[(3-cholamidopropyl) dimethylammoniol-1-propanesulfonate

CTAB:

cetyl trimethylammonium bromide

HPLC:

high-performance liquid chromatography

MALDI-TOF:

matrixassisted laser desorption ionization-time of flight

PAGE:

polyacrylamide gel electrophoresis

PCR:

polymerase chain reaction

PLA2 :

phospholipase(s) A2

POPC:

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

POPE:

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine

POPG:

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol

POPS:

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine

RACE:

rapid amplification of cDNA ends

RP-HPLC:

reversed-phase-HPLC

RT:

reverse transcriptase

SDS:

sodium lauryl sulfate

TFA:

trifluoroacetic acid

References

  1. Dennis, E.A. (1997) The Growing Phospholipase A2 Superfamily of Signal Transduction Enzymes, Trends Biochem. Sci. 22, 1–2.

    Article  PubMed  CAS  Google Scholar 

  2. Chaminade, B., Le Balle, F., Fourcade, O., Nauze, M., Delagebeaudeuf, C., Gassama-Diagne, A., Simon, M.F., Fauvel, J., and Chap, H. (1999) New Developments in Phospholipase A2, Lipids 34 (Suppl.), S49-S55.

    PubMed  CAS  Google Scholar 

  3. Tischfield, J.A. (1997) A Reassessment of the Low Molecular Weight Phospholipase A2 Gene Family in Mammals, J. Biol. Chem. 272, 17247–17250.

    Article  PubMed  CAS  Google Scholar 

  4. Seilhamer, J.J., Randall, T.L., Yamanaka, M., and Johnson, L.K. (1986) Pancreatic Phospholipase A2: Isolation of the Human Gene and cDNAs from Porcine Pancreas and Human Lung, DNA 5, 519–527.

    PubMed  CAS  Google Scholar 

  5. Tojo, H., Ono, T., Kuramitsu, S., Kagamiyama, H., and Okamoto, M. (1988) A Phospholipase A2 in the Supernatant Fraction of Rat Spleen, J. Biol. Chem. 263, 5724–5731.

    PubMed  CAS  Google Scholar 

  6. Sakata, T., Nakamura, E., Tsuruta, Y., Tamaki, M., Teraoka, H., Tojo, H., and Ono, T. (1989) Presence of Pancreatic Type Phospholipase A2 mRNA in Rat Gastric Mucosa and Lung, Biochim. Biophys. Acta 1007, 124–126.

    PubMed  CAS  Google Scholar 

  7. Tojo, H., Ono, T., and Okamoto, M. (1991) Spleen Phospholipase A2, Methods Enzymol. 197, 390–399.

    PubMed  CAS  Google Scholar 

  8. Tojo, H., Ono, T., and Okamoto, M. (1993) Reverse-Phase High-Performance Liquid Chromatographic Assay of Phospholipases: Application of Spectrophotometric Detection to Rat Phospholipase A2 Isozymes, J. Lipid Res. 34, 837–844.

    PubMed  CAS  Google Scholar 

  9. Kortesuo, P.T., Hietaranta, A.J., Jamia, M., Hirsimaki, P., and Nevalainen, T.J. (1993) Rat Pancreatic Phospholipase A2. Purification, Localization, and Development of an Enzyme Immunoassay, Int. J. Pancreatol. 13, 111–118.

    PubMed  CAS  Google Scholar 

  10. Nevalainen, T.J., and Haapanen, T.J. (1993) Distribution of Pancreatic (Group I) and Synovial-type (Group II) Phospholipases A2 in Human Tissues, Inflammation 17, 453–464.

    Article  PubMed  CAS  Google Scholar 

  11. Hara, S., Kudo, I., Komatani, T., Takahashi, K., Nakatani, Y., Natori, Y., Ohshima, M., and Inoue, K. (1995) Detection of Two 14 kDa Phospholipase A2 Isoforms in Rat Kidney: Their Role in Eicosanoid Synthesis, Biochim. Biophys. Acta 1257, 11–17.

    PubMed  Google Scholar 

  12. Aarsman, A.J., Schalkwijk, C.G., Neys, F.W., Iijima, N., Wherret, J.R., and van den Bosch, H. (1996) Purification and Characterization of Ca2+-Dependent Phospholipase A2 from Rat Kidney, Arch. Biochem. Biophys. 331, 95–103.

    Article  PubMed  CAS  Google Scholar 

  13. Ohara, O., Ishizaki, J., and Arita, H. (1995) Structure and Function of Phospholipase A2 Receptor, Prog. Lipid Res., 34, 117–138.

    Article  PubMed  CAS  Google Scholar 

  14. Lambeau, G.H., Cupillard, L., and Ladzunski, M. (1997) Membrane Receptors for Venom Phospholipase A2, in Venom Phospholipase A 2 Enzymes: Structure Function and Mechanism (Kini, R.M., eds.), pp. 389–412, John Wiley & Sons, Chichester.

    Google Scholar 

  15. Kundu, G.C., and Mukherjee, A.B. (1997) Evidence That Porcine Pancreatic Phospholipase A2 via Its High Affinity Receptor Stimulates Extracellular Matrix Invasion by Normal and Cancer Cells, J. Biol. Chem. 272, 2346–2353.

    Article  PubMed  CAS  Google Scholar 

  16. Hanasaki, K., Yokota, Y., Ishizaki, J., Itoh, T., and Arita, H. (1997) Resistance to Endotoxic Shock in Phospholipase A2 Receptor-Deficient Mice, J. Biol. Chem. 272, 32792–32797.

    Article  PubMed  CAS  Google Scholar 

  17. Neas, N.P., and Hazel, J.R. (1984) Temperature-Dependent Deacylation of Molecular Species of Phosphatidylcholine by Microsomal Phospholipase A2 of Thermally Acclimated Rainbow Trout, Salmo gairdneri, Lipids 19, 258–263.

    PubMed  CAS  Google Scholar 

  18. Neas, N.P., and Hazel, J.R. (1985) Partial Purification and Kinetic Characterization of the Microsomal Phospholipase A2 from Thermally Acclimated Rainbow Trout (Salmo gairdneri), J. Comp. Physiol. 155B, 461–469.

    Google Scholar 

  19. Audley, M.A., Shetty, K.J., and Kinsella, J.E. (1978) Isolation and Properties of Phospholipase A from Pollock Muscle, J. Food Sci. 43, 1771–1775.

    Article  CAS  Google Scholar 

  20. Aaen, B., Jessen, F., and Jensen, B. (1995) Partial Purification and Characterization of a Cellular Acidic Phospholipase A2 from Cod (Gadus morhua), Comp. Biochem. Physiol. 110B, 547–554.

    CAS  Google Scholar 

  21. Zambonino Infante, J.L., and Cahu, C.L. (1999) High Dietary Lipid Levels Enhance Digestive Tract Maturation and Improve Dicentrarchus labrax Larval Development, J. Nutr. 129, 1195–2000.

    PubMed  CAS  Google Scholar 

  22. Iijima, N., Nakamura, M., Uematsu, K., and Kayama, M. (1990) Partial Purification and Characterization of Phospholipase A2 from the Hepatopancreas of Red Sea Bream, Nippon Suisan Gakkaishi 56, 1331–1339.

    CAS  Google Scholar 

  23. Iijima, N., Chosa, S., Uematsu, K., Goto, T., Hoshita, T., and Kayama, M. (1997) Purification and Characterization of Phospholipase A2 from the Pyloric Caeca of Red Sea Bream, Pagrus major, Fish Physiol. Biochem. 16, 487–498.

    Article  CAS  Google Scholar 

  24. Ono, H., and Iijima, N. (1998) Purification and Characterization of Phospholipase A2 Isoforms from the Hepatopancreas of Red Sea Bream, Pagrus major, Fish Physiol. Biochem. 18, 135–147.

    Article  CAS  Google Scholar 

  25. Uematsu, K., Kitano, M., Morita, M., and Iijima, N. (1992) Presence and Ontogeny of Intestinal and Pancreatic Phospholipase A2-like Proteins in the Red Sea Bream, Pagrus major. An Immunocytochemical Study, Fish Physiol. Biochem. 9, 427–438.

    Article  CAS  Google Scholar 

  26. Laemmli, U.K. (1970) Cleavage of Structural Proteins During the Assembly of Bacteriophage T4, Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  27. Heinrickson, R.L. (1991) Dissection and Sequence Analysis of Phospholipase A2, Methods Enzymol. 197, 201–214.

    Article  Google Scholar 

  28. Fleer, E.A.M., Verheij, H.M., and de Haas, G.H. (1978) The Primary Structure of Bovine Pancreatic Phospholipase A2, Eur. J. Biochem. 82, 261–269.

    Article  PubMed  CAS  Google Scholar 

  29. Puijk, W.C., Verheij, H.M., and de Haas, G.H. (1977) The Primary Structure of Phospholipase A2 from Porcine Pancreas. A Reinvestigation, Biochim. Biophys. Acta 492, 254–259.

    PubMed  CAS  Google Scholar 

  30. Joubert, F.J., and Taljaard, N. (1980) Purification, Some Properties and Amino Acid Sequences of Two Phospholipase A (CM-II and CM-III) from Naja naja kaouthia Venom, Eur. J. Biochem. 112, 493–499.

    Article  PubMed  CAS  Google Scholar 

  31. Verheij, H.M., Slotboom, A.J., and de Haas, G.H. (1981) Structure and Function of Phospholipase A2, Rev. Physiol. Biochem. Pharmacol. 91, 91–203.

    PubMed  CAS  Google Scholar 

  32. Van den Bosch, H. (1982) Phospholipases, in Phospholipids (Hawthorne, J.N. and Ansell, G.B., eds.), pp. 313–357. Elsevier Biomedical, Amsterdam.

    Google Scholar 

  33. de Haas, G.H., Postema, N.M., Nieuwenhuizen, W., and van Deenen, L.L.M. (1967) Purification and Properties of Phospholipase A from Porcine Pancreas, Biochim. Biophys. Acta 159, 103–117.

    Google Scholar 

  34. Nielsen, H., Brunak, S., and von Heijne, G. (1999) Machine Learning Approaches for the Prediction of Signal Peptides and Other Protein Sorting Signals, Protein Eng. 12, 3–9.

    Article  PubMed  CAS  Google Scholar 

  35. Halban, P.A., and Irminger, J.C. (1994) Sorting and Processing of Secretory Proteins, Biochem. J. 299, 1–18.

    PubMed  CAS  Google Scholar 

  36. Noel, J.P., Deng, T., Hamilton, K.J., and Tsai, M.-D. (1990) Phospholipase A2 Engineering. 3. Replacement of Lysine-56 by Neutral Residues Improves Catalytic Potency Significantly, Alters Substrate Specificity, and Clarifies the Mechanism of Interfacial Recognition, J. Am. Chem. Soc. 112, 3704–3706.

    Article  CAS  Google Scholar 

  37. Noel, J.P., Bingman, C.A., Deng, T., Dupureur, C.M., Hamilton, K.J., Jiang, R.-T., Kwak, J.-G., Sekharudu, C., Sundaralingam, M., and Tsai, M.-D. (1991) Phospholipase A2 Engineering. X-ray Structural and Functional Evidence for the Interaction of Lysine-56 with Substrates, Biochemistry 30, 11801–11811.

    Article  PubMed  CAS  Google Scholar 

  38. Lugtigheid, R.B., Otten-Kuipers, M.A., Verheij, H.M., and de Haas, G.H. (1993) Arginine 53 Is Involved in Head-Group Specificity of the Active Site of Porcine Pancreatic Phospholipase A2, Eur. J. Biochem. 213, 517–522.

    Article  PubMed  CAS  Google Scholar 

  39. Beiboer, S.H., Franken, P.A., Cox, R.C., and Verheij, H.M. (1995) An Extended Binding Pocket Determines the Polar Head Group Specificity of Porcine Pancreatic Phospholipase A2, Eur. J. Biochem. 231, 747–753.

    Article  PubMed  CAS  Google Scholar 

  40. Han, S.K., Yoon, E.T., Scott, D.L., Sigler, P.B., and Cho, W. (1997) Structural Aspects of Interfacial Adsorption. A Crystallographic and Site-directed Mutagenesis Study of the Phospholipase A2 from the Venom of Agkistrodon piscivorus piscivorus, J. Biol. Chem. 272, 3573–3582.

    Article  PubMed  CAS  Google Scholar 

  41. Janssen, M.J.W., Vermeulen, L., Van der Helm, H.A., Aarsman, A.J., Slotbloom, A.J., and Egmond, M.R. (1999) Enzymatic Properties of Rat Group IIA and V Phospholipases A2 Compared, Biochim. Biophys. Acta 1440, 56–72.

    Google Scholar 

  42. Rogers, J., Yu, B.Z., Tsai, M.D., Berg, O.G., and Jain, M.K. (1998) Cationic Residues 53 and 56 Control the Anion-induced Interfacial kcat Activation of Pancreatic Phospholipase A2, Biochemistry 37, 9549–56.

    Article  PubMed  CAS  Google Scholar 

  43. Takasaki, C., Yutani, F., and Kajiyashiki, T. (1990) Amino Acid Sequences of Eight Phospholipases A2 from the Venom of Australian King Brown Snake, Pseudechis australis, Toxicon 28, 329–339.

    Article  PubMed  CAS  Google Scholar 

  44. Puijk, W.C., Verheij, H.M., Weitzes, P., and de Haas, G.H. (1979) The Amino Acid Sequence of the Phospholipase A2 Isoenzyme from Porcine Pancreas, Biochim. Biophys. Acta 580, 411–415.

    PubMed  CAS  Google Scholar 

  45. Chang, T.M., Chang, C.H., Wagner, D.R., and Chey, W.Y. (1999) Porcine Pancreatic Phospholipase A2 Stimulates Secretin Release from Secretin-Producing Cells, J. Biol. Chem. 274, 10758–10764.

    Article  PubMed  CAS  Google Scholar 

  46. Laurent, P. (1984) Gill Internal Morphology, in Gills (Hoar, W.S., and Randall, D.J., eds.), pp. 73–183, Academic Press, Inc., Orlando.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriaki Iijima.

About this article

Cite this article

Iijima, N., Uchiyama, S., Fujikawa, Y. et al. Purification, characterization, and molecular cloning of group I phospholipases A2 from the gills of the red sea bream, Pagrus major . Lipids 35, 1359–1371 (2000). https://doi.org/10.1007/s11745-000-0653-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-000-0653-4

Keywords

Navigation