Skip to main content
Log in

Human, but not bovine, oxidized cerebral spinal fluid lipoproteins disrupt neuronal microtubules

  • Published:
Lipids

Abstract

Cerebral spinal fluid (CSF) lipoproteins have become a focus of research since the observation that inheritance of particular alleles of the apolipoprotein E gene affects the risk of Alzheimer's disease (AD). There is evidence of increased lipid peroxidation in CSF lipoproteins from patients with AD, but the biological significance of this observation is not known. A characteristic of the AD brain is a disturbance of the neuronal microtubule organization. We have shown previously that 4-hydroxy-2(E)-nonenal, a major product of lipid peroxidation, causes disruption of neuronal microtubules and therefore tested whether oxidized CSF lipoproteins had the same effect. We exposed Neuro 2A cells to human CSF lipoproteins and analyzed the microtubule organization by immunofluorescence. In vitro oxidized human CSF lipoproteins caused disruption of the microtubule network, while their native (nonoxidized) counterparts did not. Microtubule disruption was observed after short exposures (1 h) and lipoprotein concentrations were present in CSF (20 μg/mL), conditions that did not result in loss of cell viability. Importantly, adult bovine CSF lipoproteins, oxidized under identical conditions, had no effect on the microtubule organization of Neuro 2A cells. Comparison of human and bovine CSF lipoproteins revealed similar oxidation-induced modifications of apolipoproteins E and A-I as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting. Fatty acid analysis revealed substantially lower amounts of unsaturated fatty acids in bovine CSF lipoproteins, when compared to their human counterparts. Our data therefore indicate that oxidized human CSF lipoproteins are detrimental to neuronal microtubules. This effect is species-specific, since equally oxidized bovine CSF lipoproteins left the neuronal microtubule organization unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAPH:

2,2′-azo-bis-(2-aminopropane) hydrochloride

AD:

Alzheimer's disease

apo:

apolipoprotein

blotto:

4% dry milk in Trisbuffered saline with 0.05% Tween 20

CNS:

central nervous system

CSF:

cerebral spinal fluid

DMEM/F12:

Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12

HDL:

high density lipoproteins

HNE:

4-hydroxy-2(E)-nonenal

LDL:

low density lipoproteins

PBS:

phosphate-buffered saline

PUFA:

polyunsaturated fatty acid

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

References

  1. Strittmatter, W.J., and Roses, A.D. (1995) Apolipoprotein E and Alzheimer Disease, Proc. Natl. Acad. Sci. USA 92, 4725–4727.

    Article  PubMed  CAS  Google Scholar 

  2. Pitas, R.E., Boyles, J.K., Lee, S.H., Hui, D., and Weisgraber, K.H. (1987) Lipoproteins and Their Receptors in the Central Nervous System. Characterization of the Lipoproteins in Cerebrospinal Fluid and Identification of Apolipoprotein B,E(LDL) Receptors in the Brain, J. Biol. Chem. 262, 14352–14360.

    PubMed  CAS  Google Scholar 

  3. Borghini, I., Barja, F., Pometta, D., and James, R.W. (1995) Characterization of Subpopulations of Lipoprotein Particles Isolated from Human Cerebrospinal Fluid, Biochim. Biophys. Acta 1255, 192–200.

    PubMed  Google Scholar 

  4. Guyton, J.R., Miller, S.E., Martin, M.E., Khan, W.A., Roses, A.D., and Strittmatter, W.J. (1998) Novel Large Apolipoprotein E-Containing Lipoproteins of Density 1.006–1.060 g/mL in Human Cerebrospinal Fluid, J. Neurochem. 70, 1235–1240.

    Article  PubMed  CAS  Google Scholar 

  5. Yamauchi, K., Tozuka, M., Hidaka, H., Hidaka, E., Kondo, Y., and Katsuyama, T. (1999) Characterization of Apolipoprotein E-Containing Lipoproteins in Cerebrospinal Fluid: Effect of Phenotype on the Distribution of Apolipoprotein E, Clin. Chem. 45, 1431–1438.

    PubMed  CAS  Google Scholar 

  6. Ladu, M.J., Gilligan, S.M., Lukens, J.R., Cabana, V.G., Reardon, C.A., Van Eldik, L.J., and Holtzman, D.M. (1998) Nascent Astrocyte Particles Differ from Lipoproteins in CSF, J. Neurochem. 70, 2070–2081.

    Article  PubMed  CAS  Google Scholar 

  7. Rebeck, G.W., Alonzo, N.C., Berezovska, O., Harr, S.D., Knowles, R.B., Growdon, J.H., Hyman, B.T., and Mendez, A.J. (1998) Structure and Functions of Human Cerebrospinal Fluid Lipoproteins from Individuals of Different APOE Genotypes, Exp. Neurol. 149, 175–182.

    Article  PubMed  CAS  Google Scholar 

  8. Demeester, N., Castro, G., Desrumaux, C., De Geitere, C., Fruchart, J.C., Santens, P., Mulleners, E., Engelborghs, S., De Deyn, P.P., Vandekerckhove, J., et al. (2000) Characterization and Functional Studies of Lipoproteins, Lipid Transfer Proteins, and Lecithin: Cholesterol Acyltransferase in CSF of Normal Individuals and Patients with Alzheimer's Disease, J. Lipid Res. 41, 963–974.

    PubMed  CAS  Google Scholar 

  9. Markesbery, W.R., and Carney, J.M. (1999) Oxidative Alterations in Alzheimer's Disease, Brain Pathol. 9, 133–146.

    Article  PubMed  CAS  Google Scholar 

  10. Lovell, M.A., Ehmann, W.D., Butler, S.M., and Markesbery, W.R. (1995) Elevated Thiobarbituric Acid-Reactive Substances and Antioxidant Enzyme Activity in the Brain in Alzheimer's Disease, Neurology 45, 1594–1601.

    PubMed  CAS  Google Scholar 

  11. Montine, K.S., Kim, P.J., Olson, S.J., Markesbery, W.R., and Montine, T.J. (1997) 4-Hydroxy-2-nonenal Pyrrole Adducts in Human Neurodegenerative Disease, J. Neuropathol. Exp. Neurol. 56, 866–871.

    PubMed  CAS  Google Scholar 

  12. Montine, K.S., Olson, S.J., Amarnath, V., Whetsell, W.O., Jr., Graham, D.G., and Montine, T.J. (1997) Immunohistochemical Detection of 4-Hydroxy-2-nonenal Adducts in Alzheimer's Disease Is Associated with Inheritance of APOE4, Am. J. Pathol. 150, 437–443.

    PubMed  CAS  Google Scholar 

  13. Sayre, L.M., Zelasko, D.A., Harris, P.L., Perry, G., Salomon, R.G., and Smith, M.A. (1997) 4-Hydroxynonenal-Derived Advanced Lipid Peroxidation End Products Are Increased in Alzheimer's Disease, J. Neurochem. 68, 2092–2097.

    Article  PubMed  CAS  Google Scholar 

  14. Montine, K.S., Reich, E., Neely, M.D., Sidell, K.R., Olson, S.J., Markesbery, W.R., and Montine, T.J. (1998) Distribution of Reducible 4-Hydroxynonenal Adduct Immunoreactivity in Alzheimer Disease Is Associated with APOE Genotype, J. Neuropathol. Exp. Neurol. 57, 415–425.

    PubMed  CAS  Google Scholar 

  15. Montine, T.J., Beal, M.F., Cudkowicz, M.E., O'Donnell, H., Margolin, R.A., Mcfarland, L., Bachrach, A.F., Zackert, W.E., Roberts, L.J., and Morrow, J.D. (1999) Increased CSF F2-Isoprostane Concentration in Probable AD, Neurology 52, 562–565.

    PubMed  CAS  Google Scholar 

  16. Montine, T.J., Markesbery, W.R., Morrow, J.D., and Roberts, L.J.N. (1998) Cerebrospinal Fluid F2-Isoprostane Levels Are Increased in Alzheimer's Disease, Ann. Neurol. 44, 410–413.

    Article  PubMed  CAS  Google Scholar 

  17. Mattson, M.P. (1998) Modification of Ion Homeostasis by Lipid Peroxidation: Roles in Neuronal Degeneration and Adaptive Plasticity, Trends Neurosci. 21, 53–57.

    Article  PubMed  CAS  Google Scholar 

  18. Kruman, I., Bruce-Keller, A.J., Bredesen, D., Waeg, G., and Mattson, M.P. (1997) Evidence That 4-Hydroxynonenal Mediates Oxidative Stress Induced Neuronal Apoptosis, J. Neurosci. 17, 5089–5100.

    PubMed  CAS  Google Scholar 

  19. Mark, R.J., Lovell, M.A., Markesbery, W.R., Uchida, K., and Mattson, M.P. (1997) A Role for 4-Hydroxynonenal, an Aldehydic Product of Lipid Peroxidation, in Disruption of Ion Homeostasis and Neuronal Death Induced by Amyloid Beta-Peptide, J. Neurochem. 68, 255–264.

    Article  PubMed  CAS  Google Scholar 

  20. Esterbauer, H., Schmidt, R., and Hayn, M. (1997) Relationships Among Oxidation of Low-Density Lipoprotein, Antioxidant Protection, and Atherosclerosis, Adv. Pharmacol. 38, 425–456.

    Article  PubMed  CAS  Google Scholar 

  21. Montine, T.J., Montine, K.S., and Swift, L.L. (1997) Central Nervous System Lipoproteins in Alzheimer's Disease, Am. J. Pathol. 151, 1571–1575.

    PubMed  CAS  Google Scholar 

  22. Lovell, M.A., Ehmann, W.D., Mattson, M.P., and Markesbery, W.R. (1997) Elevated 4-Hydroxynonenal in Ventricular Fluid in Alzheimer's Disease, Neurobiol. Aging. 18, 457–461.

    Article  PubMed  CAS  Google Scholar 

  23. Keller, J.N., Hanni, K.B., and Markesbery, W.R. (1999) Oxidized Low Density Lipoprotein Induces Neuronal Death: Implications for Calcium, Reactive Oxygen Species, and Caspases, J. Neurochem. 72, 2601–2609.

    Article  PubMed  CAS  Google Scholar 

  24. Keller, J.N., Hanni, K.B., Pedersen, W.A., Cashman, N.R., Mattson, M.P., Gabbita, S.P., Friebe, V., and Markesbery, W.R. (1999) Opposing Actions of Native and Oxidized Lipoprotein on Motor Neuron-Like Cells, Exp. Neurol. 157, 202–210.

    Article  PubMed  CAS  Google Scholar 

  25. Papassotiropoulos, A., Ludwig, M., Naib-Majani, W., and Rao, G.S. (1996) Induction of Apoptosis and Secondary Necrosis in Rat Dorsal Root Ganglion Cell Cultures by Oxidized Low Density Lipoprotein, Neurosci. Lett. 209, 33–36.

    Article  PubMed  CAS  Google Scholar 

  26. Sugawa, M., Ikeda, S., Kushima, Y., Takashima, Y., and Cynshi, O. (1997) Oxidized Low Density Lipoprotein Caused CNS Neuron Cell Death, Brain Res. 761, 165–172.

    Article  PubMed  CAS  Google Scholar 

  27. Kivatinitz, S.C., Pelsman, M.A., Alonso, A.C., Bagatolli, L., and Quiroga, S. (1997) High-Density Lipoprotein Aggregated by Oxidation Induces Degeneration of Neuronal Cells, J. Neurochem. 69, 2102–2114.

    Article  PubMed  CAS  Google Scholar 

  28. Bassett, C.N., Neely, M.D., Sidell, K.R., Markesbery, W.R., Swift, L.L., Montine, T.J., (1999) Cerebrospinal Fluid Lipoproteins Are More Vulnerable to Oxidation in Alzheimer's Disease and Are Neurotoxic When Oxidized ex vivo, Lipids 34, 1273–1280.

    PubMed  CAS  Google Scholar 

  29. Terry, R., and Wisniewski, H. (1970) The Ultrastructure of the Neurofibrillary Tangle and the Senile Plaque, in CIBA Foundation Symposium on Alzheimer's Disease and Related Conditions (Wolstenholme, G., and O'Connor, M., eds.) pp. 145–168, J&A Churchill, London.

    Google Scholar 

  30. Gray, E.G., Paula-Barbosa, M., and Roher, A. (1987) Alzheimer's Disease: Paired Helical Filaments and Cytomembranes, Neuropath. Appl. Neurobiol. 13, 91–110.

    CAS  Google Scholar 

  31. Paula-Barbosa, M., Tavares, M.A., and Cadete-Leite, A. (1987) A Quantitative Study of Frontal Cortex Dendritic Microtubules in Patients with Alzheimer's Disease, Brain Res. 417, 139–142.

    Article  PubMed  CAS  Google Scholar 

  32. Metuzals, J., Robitaille, Y., Houghton, S., Gauthier, S., Kang, C.Y., and Leblanc, R. (1988) Neuronal Transformations in Alzheimer's Disease, Cell Tissue Res. 252, 239–248.

    PubMed  CAS  Google Scholar 

  33. Kowall, N.W., and Kosik, K.S. (1987) Axonal Disruption and Aberrant Localization of Tau Protein Characterize the Neuropil Pathology of Alzheimer's Disease, Ann Neurol. 22, 639–643.

    Article  PubMed  CAS  Google Scholar 

  34. Lee, V.M. (1996) Regulation of Tau Phosphorylation in Alzheimer's Disease, Ann. NY Acad. Sci. 777, 107–113.

    PubMed  CAS  Google Scholar 

  35. Goedert, M. (1996) Tau Protein and the Neurofibrillary Pathology of Alzheimer's Disease, Ann. NY Acad. Sci. 777, 121–131.

    PubMed  CAS  Google Scholar 

  36. Neely, M.D., Sidell, K.R., Graham, D.G., and Montine, T.J. (1999) The Lipid Peroxidation Product 4-Hydroxynonenal Inhibits Neurite Outgrowth, Disrupts Neuronal Microtubules, and Modifies Cellular Tubulin, J. Neurochem. 72, 2323–2333.

    Article  PubMed  CAS  Google Scholar 

  37. Montine, K.S., Bassett, C.N., Ou, J.J., Markesbery, W.R., Swift, L.L., and Montine, T.J. (1998) Apolipoprotein E Allelic Influence on Human Cerebrospinal Fluid Apolipoproteins, J. Lipid Res. 39, 2443–2451.

    PubMed  CAS  Google Scholar 

  38. Esterbauer, H., and Ramos, P. (1995) Chemistry and Pathophysiology of Oxidation of LDL, in Reviews of Physiology, Biochemistry and Pharmacology (Blaustein, M.P., Grunicke, H., Habermann, E., Pette, D., Reuter, H., Sakmann, B., Schultz, G., Schweiger, M., and Weibel, E.R. eds.) Vol. 127, pp. 31–64, Springer, Berlin.

    Google Scholar 

  39. Laemmli, U.K. (1970) Cleavage of Structural Proteins During the Assembly of the Head of Bacteriophage T4, Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  40. Swift, L.L. (1995) Assembly of Very Low Density Lipoproteins in Rat Liver: A Study of Nascent Particles Recovered from the Rough Endoplasmic Reticulum, J. Lipid Res. 36, 395–406.

    PubMed  CAS  Google Scholar 

  41. Morrison, W., and Smith, L. (1964) Preparation of Fatty Acid Methyl Esters and Dimethylacetals from Lipids with Boron Fluoride-Methanol, J. Lipid Res. 5, 600–608.

    PubMed  CAS  Google Scholar 

  42. Babson, A., Shapiro, P., and Phillips, G. (1962) A New Assay for Cholesterol and Cholesterol Esters in Serum Which Is Not Affected by Bilirubin, Clin. Chim. Acta 7, 800–804.

    Article  PubMed  CAS  Google Scholar 

  43. Olmsted, J.B., Carlson, K., Klebe, R., Ruddle, F., and Rosenbaum, J. (1970) Isolation of Microtubule Protein from Cultured Mouse Neuroblastoma Cells, Proc. Natl. Acad. Sci. USA 65, 129–136.

    Article  PubMed  CAS  Google Scholar 

  44. Roheim, P.S., Carey, M., Forte, T., and Vega, G.L. (1979) Apolipoproteins in Human Cerebrospinal Fluid, Proc. Natl. Acad. Sci. USA 76, 4646–4649.

    Article  PubMed  CAS  Google Scholar 

  45. Puppione, D.L., Fischer, W.H., Park, M., Gazal, O.S., and Williams, G.L. (1998) Microsequencing of Bovine Cerebrospinal Fluid Apolipoproteins: Identification of Bovine Apolipoprotein E, Lipids 33, 781–786.

    PubMed  CAS  Google Scholar 

  46. Haberland, M.E., and Steinbrecher, U.P. (1992) Modified Low-Density Lipoproteins: Diversity and Biological Relevance in Atherogenesis, in Molecular Genetics of Coronary Artery Disease: Candidate Genes and Processes in Atherosclerosis (Lusis, A.J., Rotter, J.I., and Sparks, R.S., eds.) Vol. 14, pp. 35–61, Karger, New York.

    Google Scholar 

  47. Scanu, A.M., Edelstein, C., and Keim, P. (1975) Serum Lipoproteins, in The Plasma Proteins (Putnam, F.W., ed.) Vol. 1, pp. 317–491, Academic Press, New York.

    Google Scholar 

  48. Beffert, U., Danik, M., Krzywkowski, P., Ramassamy, C., Berrada, F., and Poirier, J. (1998) The Neurobiology of Apolipoproteins and Their Receptors in the CNS and Alzheimer's Disease, Brain Res. Brain Res. Rev. 27, 119–142.

    Article  PubMed  CAS  Google Scholar 

  49. Pitas, R.E., Boyles, J.K., Lee, S.H., Foss, D., and Mahley, R.W. (1987) Astrocytes Synthesize Apolipoprotein E and Metabolize Apolipoprotein E-Containing Lipoproteins, Biochim. Biophys. Acta 917, 148–161.

    PubMed  CAS  Google Scholar 

  50. Zannis, V.I., Breslow, J.L., Utermann, G., Mahley, R.W., Weisgraber, K.H., Havel, R.J., Goldstein, J.L., Brown, M.S., Schonfeld, G., Hazzard, W.R., et al., (1982) Proposed Nomenclature of ApoE Isoproteins, ApoE Genotypes, and Phenotypes, J. Lipid Res. 23, 911–914.

    PubMed  CAS  Google Scholar 

  51. Illingworth, D.R., and Glover, J. (1971) The Composition of Lipids in Cerebrospinal Fluid of Children and Adults, J. Neurochem. 18, 769–776.

    PubMed  CAS  Google Scholar 

  52. Jackson, R.L., Morrisett, J.D., and Gotto, A.M., Jr. (1976) Lipoprotein Structure and Metabolism, Physiol. Rev. 56, 259–316.

    PubMed  CAS  Google Scholar 

  53. Hermier, D., and Dillon, J.C. (1992) Characterization of Dietary-Induced Hypercholesterolemia in the Chicken, Biochim. Biophys. Acta 1124, 178–184.

    PubMed  CAS  Google Scholar 

  54. Weisgraber, K.H., and Mahley, R.W. (1996) Human Apolipoprotein E: the Alzheimer's Disease Connection, FASEB J. 10, 1485–1494.

    PubMed  CAS  Google Scholar 

  55. Dhaliwal, B.S., and Steinbrecher, U.P. (1999) Scavenger Receptors and Oxidized Low Density Lipoproteins, Clin. Chim. Acta 286, 191–205.

    Article  PubMed  CAS  Google Scholar 

  56. Borsum, T., Henriksen, T., Carlander, B., and Reisvaag, A. (1982) Injury to Human Cells in Culture Induced by Low Density Lipoprotein: An Effect Independent of Receptor Binding and Endocytotic Uptake of Low Density Lipoprotein, Scand. J. Clin. Lab. Invest. 42, 75–81.

    Article  PubMed  CAS  Google Scholar 

  57. Hessler, J.R., Morel, D.W., Lewis, L.J., and Chisolm, G.M. (1983) Lipoprotein Oxidation and Lipoprotein-Induced Cytotoxicity, Arteriosclerosis 3, 215–222.

    PubMed  CAS  Google Scholar 

  58. Noble, R.C. (1978) Digestion, Absorption and Transport of Lipids in Ruminant Animals, Prog. Lipid Res. 17, 55–91.

    PubMed  CAS  Google Scholar 

  59. Hoff, H.F., Chisolm, G.M. III, Morel, D.W., Juergens, G., and Esterbauer, H. (1988) Chemical and Functional Changes in LDL Following Modification by 4-Hydroxynonenal, in Oxy-Radicals in Molecular Biology and Pathology, (Cerutti, P.A., Fridovich, I., and Mccord, J.M., eds.) pp. 459–472, Alan R. Liss, Inc. New York.

    Google Scholar 

  60. Suc, I., Meilhac, O., Lajoie-Mazenc, I., Vandaele, J., Jurgens, G., Salvayre, R., and Negre-Salvayre, A. (1998) Activation of EGF Receptor by Oxidized LDL, FASEB J. 12, 665–671.

    PubMed  CAS  Google Scholar 

  61. Esterbauer, H. (1982) Aldehydic Products of Lipid Peroxidation, in Free Radicals, Lipid Peroxidation and Cancer (McBrien, D.C.H., and Slater, T.F., eds.) pp. 101–128, Academic Press, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Neely.

About this article

Cite this article

Neely, M.D., Swift, L.L. & Montine, T.J. Human, but not bovine, oxidized cerebral spinal fluid lipoproteins disrupt neuronal microtubules. Lipids 35, 1249–1257 (2000). https://doi.org/10.1007/s11745-000-0641-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-000-0641-8

Keywords

Navigation