Skip to main content
Log in

Response of plasma lipids to dietary cholesterol and wine polyphenols in rats fed polyunsaturated fat diets

  • Published:
Lipids

Abstract

This experiment was designed to evaluate the effects of dietary red wine phenolic compounds (WP) and cholesterol on lipid oxidation and transport in rats. For 5 wk, weanling rats were fed polyunsaturated fat diets (n−6/n−3=6.4) supplemented or not supplemented with either 3 g/kg diet of cholesterol, 5 g/kg diet of WP, or both. The concentrations of triacylglycerols (TAG, P<0.01) and cholesterol (P<0.0002) were reduced in fasting plasma of rats fed cholesterol despite the cholesterol enrichment of very low density lipoprotein + low density lipoprotein (VLDL+LDL). The response was due to the much lower plasma concentration of high density lipoprotein (HDL) (−35%, P<0.0001). In contrast, TAG and cholesteryl ester (CE) accumulated in liver (+120 and +450%, respectively, P<0.0001). However, the cholesterol content of liver microsomes was not affected. Dietary cholesterol altered the distribution of fatty acids mainly by reducing the ratio of arachidonic acid to linoleic acid (P<0.0001) in plasma VLDL+LDL (−35%) and HDL (−42%) and in liver TAG (−42%), CE (−78%), and phospholipids (−28%). Dietary WP had little or no effect on these variables. On the other hand, dietary cholesterol lowered the α-tocopherol concentration in VLDL+LDL (−40%, P<0.003) and in microsomes (−60%, P<0.0001). In contrast, dietary WP increased the concentration in microsomes (+21%, P<0.0001), but had no effect on the concentration in VLDL+LDL. Cholesterol feeding decreased (P<0.006) whereas WP feeding increased (P<0.0001) the resistance of VLDL+LDL to copper-induced oxidation. The production of conjugated dienes after 25 h of oxidation ranged between 650 (WP without cholesterol) and 2,560 (cholesterol without WP) μmol/g VLDL+LDL protein. These findings show that dietary WP were absorbed at sufficient levels to contribute to the protection of polyunsaturated fatty acids in plasma and membranes. They could also reduce the consumption of α-tocopherol and endogenous antioxidants. The responses suggest that, in humans, these substances may be beneficial by reducing the deleterious effects of a dietary overload of cholesterol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA:

analysis of variance

apo:

apolipoprotein

CE:

cholesteryl ester

CVD:

cardiovascular diseases

HDL:

high density lipoprotein

HDL-C:

HDL cholesterol

LCAT:

lecithin: cholesterol acyltransferase

LDL:

low density lipoprotein

PL:

phospholipid

PUFA:

polyunsaturated fatty acids

TAG:

triacylglycerol

VLDL:

very low density lipoprotein

WP:

wine phenolic compounds

References

  1. Soleas, G.J., Diamandis, E.P., and Goldberg, D.M., 1997) Wine as a Biological Fluid: History Production and Role in Disease Prevention, J. Clin. Lab. Anal. 11, 287–313.

    Article  PubMed  CAS  Google Scholar 

  2. Rimm, F.B., Klatsky, A., Grabble, D., and Stampfer, M.J. (1996) Review of Moderate Alcohol Consumption and Reduced Risk of Coronary Heart Disease: Is the Effect due to Beer, Wine, or Spirits? Br. Med. J. 312, 731–736.

    CAS  Google Scholar 

  3. Renaud, S., and De Lorgeril, M., 1992) Wine, Alcohol, Platelets, and the French Paradox for Coronary Heart Disease, Lancet 339, 1523–1526.

    Article  PubMed  CAS  Google Scholar 

  4. Gaziano, J.M., Buring, J.E., Breslow, J.L., Goldhaber, S.Z., Rosner, B., Van Denburgh, M., Willet, W., and Hennekens, C.H. (1993) Moderate Alcohol Intake, Increased Levels of High-Density Lipoprotein and Its Subfractions, and Decreased Risk of Myocardial Infarction, N. Engl. J. Med. 329, 1829–1834.

    Article  PubMed  CAS  Google Scholar 

  5. Lavy, A., Fuhrman, B., Markel, A., Dankner, G., Ben-Amotz, A., Presser, D., and Aviram, M., 1994) Effect of Dietary Supplementation of Red and White Wine on Human Blood Chemistry Hematology and Coagulation: Favorable Effect of Red Wine on Plasma High-Density Lipoprotein, Ann. Nutr. Metab. 38, 287–294.

    Article  PubMed  CAS  Google Scholar 

  6. St. Leger, A.S., Cochrane, A.L., and Moore, F., 1979) Factors Associated with Cardiac Mortality in Developed Countries with Particular Reference to the Consumption of Wine, Lancet 1, 1017–1020.

    Article  PubMed  CAS  Google Scholar 

  7. Cook, N.C., and Samman, S., 1996) Flavonoids-Chemistry, Metabolism, Cardioprotective Effects, and Dietary Sources, J. Nutr. Biochem. 7, 66–76.

    Article  CAS  Google Scholar 

  8. Rice-Evans, C.A., Miller, N.J., and Paganga, G., 1997) Antioxidant Properties of Phenolic Compounds, Trends Plant Sci. 2, 152–159.

    Article  Google Scholar 

  9. Hertog, M.G.L., Feskens, E.J.M., Hollman, P.C.H., Katan, M.B., and Kromhout, D., 1993) Dietary Antioxidant Flavonoids and Risk of Coronary Heart Disease: The Zutphen Elderly Study, Lancet 342, 1007–1011.

    Article  PubMed  CAS  Google Scholar 

  10. Keli, S.O., Hertog, M.G.L., Feskens, E.J.M., and Kromhout, D., (1996) Dietary Flavonoids, Antioxidant Vitamins, and Incidence of Stroke: The Zutphen Study, Arch. Intern. Med. 156, 637–642.

    Article  PubMed  CAS  Google Scholar 

  11. Knekt, P., Järvinen, R., Reunanen, A., and Maatela, J., 1996) Flavonoid Intake and Coronary Mortality in Finland: a Cohort Study, Br. Med. J. 312, 478–481.

    CAS  Google Scholar 

  12. Frankel, E.N., Kanner, J., German, B.J., Parks, E., and Kinsella, J.E. (1993) Inhibition of Oxidation of Human Low-Density Lipoprotein by Phenolic Substances in Red Wine, Lancet 34, 454–457.

    Article  Google Scholar 

  13. Frankel, E.N., Waterhouse, A.L., and Kinsella, J.E., 1993) Inhibition of Human LDL Oxidation by Resveratrol, Lancet 341, 1103–1104.

    Article  PubMed  CAS  Google Scholar 

  14. Belguendouz, L., Frémont, L., and Linard, A., 1997) Resveratrol Inhibits Metal Ion-Dependent and Independent Peroxidation of Porcine Low-Density Lipoproteins, Biochem. Pharmacol. 53, 1347–1355.

    Article  PubMed  CAS  Google Scholar 

  15. Soleas, G.J., Diamandis, E.P., and Goldberg, D.M., 1997) Resveratrol: A Molecule Whose Time Has Come? and Gone? Clin. Biochem. 30, 91–113.

    Article  PubMed  CAS  Google Scholar 

  16. Abu-Amsha, R., Croft, K.D., Puddey, I.B., Proudfoot, J.M., and Beilin, L.J., 1996) Phenolic Content of Various Beverages Determines the Extent of Inhibition of Human Serum and Low-Density Lipoprotein Oxidation in vitro: Identification and Mechanism of Action of Some Cinnamic Acid Derivatives from Red-Wine, Clin. Sci. 91, 449–458.

    PubMed  CAS  Google Scholar 

  17. Fuhrman, B., Lavy, A., and Aviram, M., 1995) Consumption of Red Wine with Meals Reduces the Susceptibility of Human Plasma and Low-Density Lipoprotein to Lipid Peroxidation, Am. J. Clin. Nutr. 61, 549–554.

    PubMed  CAS  Google Scholar 

  18. Kondo, K., Matsumoto, A., Kurata, H., Tanahashi, H., Koda, H., Amachi, T., and Itakura, H., 1994) Inhibition of Oxidation of Low-Density Lipoprotein with Red Wine, Lancet 344, 1152.

    Article  PubMed  CAS  Google Scholar 

  19. Miyagi, Y., Miwa, K., and Inoue, H., 1997) Inhibition of Human Low-Density Lipoprotein Oxidation by Flavonoids in Red-Wine and Grape Juice, Am. J. Cardiol. 80, 1627–1631.

    Article  PubMed  CAS  Google Scholar 

  20. Nigdikar, S.V., Williams, N.R., Griffin, B.A., and Howard, A.N. (1998) Consumption of Red Wine Polyphenols Reduces the Susceptibility of Low-Density Lipoproteins to Oxidation in vivo, Am. J. Clin. Nutr. 68, 258–265.

    PubMed  CAS  Google Scholar 

  21. Serafini, M., Maiani, G., and Ferro-Luzzi, A., 1998) Alcohol-Free Red Wine Enhances Plasma Antioxidant Capacity in Humans, J. Nutr. 128, 1003–1007.

    PubMed  CAS  Google Scholar 

  22. Whitehead, T.P., Robinson, D., Allaway, S., Syms, J., and Hale, A. (1995) Effect of Red Wine Ingestion on the Antioxidant Capacity of Serum, Clin. Chem. 41, 32–35.

    PubMed  CAS  Google Scholar 

  23. Goodnight, S.H., Harris, W.S., Connor, W.E., and Illingworth, D.R. (1982) Polyunsaturated Fatty Acids, Hyperlipidemia, and Thrombosis, Arteriosclerosis 2, 87–113.

    PubMed  CAS  Google Scholar 

  24. Frémont, J., Gozzelino, M.T., Franchi, M.P., and Linard, A. (1998) Dietary Flavonoids Reduce Lipid Peroxidation in Rats Fed Polyunsaturated or Monounsaturated Fat Diets, J. Nutr. 128, 1495–1502.

    PubMed  Google Scholar 

  25. Lavy, A., Brook, G.J., Dankner, G., Amotz, A.B., and Aviram, M. (1991) Enhanced in vitro Oxidation of Plasma Lipoproteins Derived from Hypercholesterolemic Patients, Metabolism 40, 794–799.

    Article  PubMed  CAS  Google Scholar 

  26. Ikeda, I., Imasato, Y., Sasaki, E., Nakayama, M., Nagao, H., Takeo, T., Yayabe, F., and Sugano, M., 1992) Tea Catechins Decrease Micellar Solubility and Intestinal Absorption of Cholesterol in Rats, Biochim. Biophys. Acta 127, 141–146.

    Google Scholar 

  27. Frémont, L., and Gozzelino, M.T., 1996) Dietary Sunflower Oil Reduces Plasma and Liver Triacylglycerols in Fasting Rats and Is Associated with Decreased Liver Microsomal Phosphatidate Phosphohydrolase Activity, Lipids 31,871–878.

    Article  PubMed  Google Scholar 

  28. Jeandet, P., Breuil, A.C., Adrian, M., Weston, L.A., Debord, S., Meunier, P., Maume, G., and Bessis, R., 1997) HPLC Analysis of Grapevine Phytoalexins Coupling Photodiode Array Detection and Fluorometry, Anal. Chem. 69, 5172–5177.

    Article  CAS  Google Scholar 

  29. Havel, R.J., Eder, H.A., and Bragdon, J.H., 1955) The Distribution and Chemical Composition of Ultracentrifugally Separated Lipoproteins in Human Serum, J. Clin. Invest. 34, 1345–1353.

    Article  PubMed  CAS  Google Scholar 

  30. Oschry, Y., and Eisenberg, S., 1982) Rat Plasma Lipoproteins: Reevaluation of a Lipoprotein System in an Animal Devoid of Cholesteryl Ester Transfer Activity, J. Lipid Res. 23, 1099–1106.

    PubMed  CAS  Google Scholar 

  31. Folch, J., Lees, M., and Sloane Stanley, G.H., 1957) A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  32. Bartlett, G.R., 1959) Phosphorus Assay in Column Chromatography, J. Biol. Chem. 234, 466–468.

    PubMed  CAS  Google Scholar 

  33. Bradford, M.M., 1976) A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  34. Burton, G.W., Webb, A., and Ingold, K.U., 1985) A Mild, Rapid, and Efficient Method of Lipid Extraction for Use in Determining Vitamin E/Lipid Ratios, Lipids 20, 29–39.

    PubMed  CAS  Google Scholar 

  35. Esterbauer, H., Striegl, G., Puhl, H., and Rotheneder, M., 1989) Continuous Monitoring of in vitro Oxidation of Human Low Density Lipoprotein, Free Rad. Res. Comms 6, 67–75.

    CAS  Google Scholar 

  36. Grove, D., and Pownall, H.J., 1991) Comparative Specifity of Plasma Lecithin: Cholesterol Acyltransferase from Ten Animal Species, Lipids 26, 416–420.

    PubMed  CAS  Google Scholar 

  37. Liu, M., and Bagdade, J.D., 1995) Specificity of Lecithin: Cholesterol Acyltransferase and Atherogenic Risk: Comparative Studies on the Plasma Composition and in vitro Synthesis of Cholesteryl Esters in 14 Vertebrate Species, J. Lipid Research 36, 1813–1824.

    CAS  Google Scholar 

  38. Ha, Y.C., and Barter, P.J., 1982) Differences in Plasma Cholesteryl Ester Transfer Activity in Sixteen Vertebrate Species, Comp. Biochem. Physiol. 71B, 265–269.

    CAS  Google Scholar 

  39. Wong, S., Reardon, M.F., and Nestel, P.J., 1985) Reduced Triglycerides Formation from Long Chain Polyenoic Fatty Acids in Rat Hepatocytes, Metabolism 34, 900–905.

    Article  PubMed  CAS  Google Scholar 

  40. Balasubramaniam, S., Simons, L.A., Chang, S., and Hickie, J.B. (1985) Reduction in Plasma Cholesterol and Increase in Biliary Cholesterol by a Diet Rich in n−3 Fatty Acids in the Rat, J. Lipid Res. 26, 684–689.

    PubMed  CAS  Google Scholar 

  41. Huang, Y.S., Nassar, B.A., and Horrobin, D.F., 1986) Changes of Plasma Lipids and Long-Chain n−3 and n−6 Fatty Acids in Plasma, Liver, Heart and Kidney Phospholipids of Rats Fed Variable Levels of Fish Oil with or Without Cholesterol Supplementation, Biochim. Biophys. Acta 879, 22–27.

    PubMed  CAS  Google Scholar 

  42. Lu, Y.F., and Wu, H.L., 1994) Effect of Monounsaturated Fatty Acids Under Fixed P/S and n−6/n−3 Ratios on Lipid Metabolism, J. Nutr. Sci. Vitaminol. 40, 189–200.

    PubMed  CAS  Google Scholar 

  43. Chautan, M., Chanussot, F., Portugal, H., Pauli, A.M., and Lafont, H. (1990) Effects of Salmon Oil and Corn Oil on Plasma Lipid Level and Hepato-Biliary Cholesterol Metabolism in Rats, Biochim. Biophys. Acta 879, 22–27.

    Google Scholar 

  44. Mitropoulos, K.A., Venkatessen, S., and Balasubramaniam, S. (1980) On the Mechanism of Regulation of Hepatic Hydroxy-3-methyl Glutaryl Coenzyme A Reductase and of Acyl Coenzyme A: Cholesterol Acyltransferase by Dietary Fat, Biochim. Biophys. Acta, 619, 247–257.

    PubMed  CAS  Google Scholar 

  45. Fungwe, T.V., Cagen, L.M., Cook, G.A., Wilcox, H.G., and Heimberg, M. (1993) Dietary Cholesterol Stimulates Hepatic Biosynthesis of Triglyceride and Reduces Oxidation of Fatty Acids in the Rat, J. Lipid Res. 34, 933–941.

    PubMed  CAS  Google Scholar 

  46. Al-Shurbaji, A., Larsson-Backström, C., Berkglund, L., Eggertsen, G., and Björkhem, I., 1991) Effect of n−3 Fatty Acids on the Key Enzymes Involved in Cholesterol and Triglyceride Turnover in Rat Liver, Lipids 26, 385–389.

    PubMed  CAS  Google Scholar 

  47. Garg, M.L., Snoswell, A.M., and Sabine, J.R., 1985) Effect of Dietary Cholesterol on Cholesterol Content and Fatty Acid Profiles of Rat Liver and Plasma, Nutr. Rep. Int. 32, 117–127.

    CAS  Google Scholar 

  48. Wander, R.C., Du, S.H., and Thomas, D.R., 1998) Influence of Long-Chain Polyunsaturated Fatty Acids on Oxidation of Low Density Lipoprotein, Prostaglandins, Leukotriences Essent. Fatty Acids 59, 143–151.

    Article  CAS  Google Scholar 

  49. Nenseter, M.S., Gudmundsen, O., Malterud, K.E., Berg, T., and Drevon, C.A., 1994) Effect of Cholesterol Feeding on the Susceptibility of Lipoproteins to Oxidative Modification, Biochim. Biophys. Acta. 1213, 207–214.

    PubMed  CAS  Google Scholar 

  50. Da Silva, E.L., Piskula, M., and Terao, J., 1998) Enhancement of Antioxidative Ability of Rat Plasma by Oral Administration of (−)-Epicatechin, Free Radical Biol. Med. 24, 1209–1216.

    Article  Google Scholar 

  51. Hayek, T., Fuhrman, B., Vaya, J., Rosenblat, M., Belinky, P., Coleman, R., Elis, A., and Aviram, M., 1997) Reduced Progression of Atherosclerosis in Apolipoprotein E-Deficient Mice Following Consumption of Red Wine, or its Polyphenols Quercetin or Catechin, Is Associated with Reduced Susceptibility of LDL to Oxidation and Aggregation, Arterioscler. Thromb. Vasc. Biol. 17, 2744–2752.

    PubMed  CAS  Google Scholar 

  52. Tsuda, T., Shiga, K., Ohshima, K., Kawakishi, S., and Osawa, T. (1996) Inhibition of Lipid Peroxidation and the Active Oxygen Radical Scavenging Affect of Anthocyanin Pigments Isolated from Phaseolus vulgaris, L. Biochem. Pharmacol. 52, 1033–1039.

    Article  CAS  Google Scholar 

  53. Lapidot, T., Harel, S., Granit, R., and Kanner, J. (1998) Bioavailability of Red Wine Anthocyanins as Detected in Human Urine, J. Agric. Food Chem. 46, 4297–4302.

    Article  CAS  Google Scholar 

  54. Tebib, K., Besançon, P., and Rouanet, J.M., 1994) Dietary Grape Seed Tannins Affect Lipoproteins, Lipoprotein Lipases and Tissue Lipids in Rats Fed Hypercholesterolemic Diets, J. Nutr. 124, 2451–2457.

    PubMed  CAS  Google Scholar 

  55. Parthasarathy, S., Barnett, J., and Fong, L.G., 1990) High-Density Lipoprotein Inhibits the Oxidative Modification of Low-Density Lipoprotein, Biochim. Biophys. Acta 1044, 275–283.

    PubMed  CAS  Google Scholar 

  56. Watson, A.D., Berliner, J.A., Hama, S.Y., La Du, B.N., Faull, K.F., Fogelman, A.M., and Navab, M., 1995) Protective Effect of High Density Lipoprotein Associated Paraoxonase—Inhibition of the Biological Activity of Minimally Oxidized Low Density Lipoprotein, J. Clin. Invest. 96, 2882–2891.

    PubMed  CAS  Google Scholar 

  57. Singh, K., Chander, R., and Kapoor, N.K., 1997) High Density Lipoprotein Subclasses Inhibit Low Density Lipoprotein Oxidation, Indian J. Biochem. Biophys. 34, 313–318.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucie Frémont.

About this article

Cite this article

Frémont, L., Gozzelino, M.T. & Linard, A. Response of plasma lipids to dietary cholesterol and wine polyphenols in rats fed polyunsaturated fat diets. Lipids 35, 991–999 (2000). https://doi.org/10.1007/s11745-000-0610-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-000-0610-2

Keywords

Navigation