Skip to main content
Log in

Surface and Antimicrobial Activity of Sulfobetaines

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

Sulfobetaines belong to the group of zwitterionic surfactants. They are electroneutral salts, which have in the same molecule, two ionic centers with different charge. Due to the specific structure they exhibit excellent properties such as good solubility in water and detergency. In this paper we present surface properties and adsorption parameters of sulfobetaines in water/air systems. From the adsorption isotherms the CMC value, the surface tension and surface pressure at the CMC as well as the efficiency of adsorption were determined. Physicochemical analyses of the data allowed for the further description of adsorption process. Results showed that sulfobetaines exhibit good surface properties especially low CMC and p20 values. Additionally the antimicrobial activity of sulfobetaines solutions against gram-positive and gram-negative bacteria were tested by the well-diffusion method. MIC values and growth kinetics were determined by microdilution method. Antimicrobial assays demonstrated that sulfobetaines can be good antibacterial agents, but the activity of surfactants strongly depends on alkyl chain length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wydro P, Paluch M (2005) A study of the interaction of dodecyl sulfobetaine with cationic and anionic surfactant in mixed micelles and monolayers at the air/water interface. J Colloid Interface Sci 286(1):387–391

    Article  CAS  Google Scholar 

  2. Lomax EG (ed) (1996) Amphoteric surfactant, second edition, surfactant science series, vol 59. Marcel Dekker Inc, New York

    Google Scholar 

  3. Ward RS, Davies J, Hodges G, Roberts DW (2002) Synthesis of quaternary alkylammonium sulfobetaines. Synthesis 16:2431–2439

    Article  Google Scholar 

  4. Staszak K, Wieczorek D, Zieliński R (2013) Synthesis and interfacial activity of novel sulfobetaines in aqueous solutions, tenside surfactants. Detergents 50:45–51

    Google Scholar 

  5. Paradowska A, Bartkowiak G, Schroeder G (2011) Detergenty w kosmetyce. In: Kosmet.-Chem. Dla Ciała, Cursivia

  6. Rosen MJ (2004) Surfactants and interfacial phenomena. Wiley, Hoboken

    Book  Google Scholar 

  7. Mahajan RK, Sharma R (2011) Analysis of interfacial and micellar behavior of sodium dioctyl sulphosuccinate salt (AOT) with zwitterionic surfactants in aqueous media. J Colloid Interface Sci 363:275–283

    Article  CAS  Google Scholar 

  8. McLachlan AA, Marangoni DG (2006) Interactions between zwitterionic and conventional anionic and cationic surfactants. J Colloid Interface Sci 295:243–248

    Article  CAS  Google Scholar 

  9. Wieczorek D, Kwaśniewska D (2012) Właściwości powierzchniowe wybranych surfaktantów betainowych, Czynniki Determinujące Jakość Produktów Procesów. pp 22–31

  10. Shoaib A, Fuller J (2002) Amphoteric surfactants for household and I&I: widely used in the personal care industry, these materials offer many benefits to household manufacturers too. Househ. Pers. Prod. Ind. http://www.highbeam.com/doc/1G1-85281422.html (accessed February 19, 2015)

  11. Staszak K, Wieczorek D (2012) Wetting properties of new sulfobetaines. Polish J Commod Sci 4(22):94–101

    Google Scholar 

  12. Wang T, Wang YQ, Su YL, Jiang ZY (2006) Antifouling ultrafiltration membrane composed of polyethersulfone and sulfobetaine copolymer. J Membr Sci 280:343–350

    Article  CAS  Google Scholar 

  13. Kuo WH, Wang MJ, Chien HW, Wei TC, Lee C, Tsai WB (2011) Surface modification with poly(sulfobetaine methacrylate-co-acrylic acid) to reduce fibrinogen adsorption, platelet adhesion, and plasma coagulation. Biomacromolecules 12:4348–4356

    Article  CAS  Google Scholar 

  14. Chen SH, Chang Y, Lee KR, Wei TC, Higuchi A, Ho FM, Tsou CC, Ho HT, Lai JY (2012) Hemocompatible control of sulfobetaine-grafted polypropylene fibrous membranes in human whole blood via plasma-induced surface zwitterionization. Langmuir 28:17733–17742

    Article  CAS  Google Scholar 

  15. Zieliński R (2013) Surfaktanty: budowa, właściwości, zastosowania. Wydawnictwo Uniwersytetu Ekonomicznego

  16. Yoshimura T, Ichinokawa T, Kaji M, Esumi K (2006) Synthesis and surface-active properties of sulfobetaine-type zwitterionic gemini surfactants. Colloids Surf Physicochem Eng Asp 273:208–212

    Article  CAS  Google Scholar 

  17. Staszak K, Prochaska K (2004) Interfacial activity of copper(II) complexes with chelating ligands and individual hydrophobic extractants in model extraction systems: I. Study of equilibrium interfacial tension at the hydrocarbon/water interface for systems with copper(II) complexes with chelating ligands and individual hydrophobic extractants. J Colloid Interface Sci 280:184–191

    Article  CAS  Google Scholar 

  18. Eastoe J (2005) Surfactant aggregation and adsorption at interfaces. In: Cosgrove T (ed) Colloid Sci. Blackwell Publishing Ltd, Oxford, pp 50–76

    Chapter  Google Scholar 

  19. Cheng C, Qu G, Wei J, Yu T, Ding W (2012) Thermodynamics of micellization of sulfobetaine surfactants in aqueous solution. J Surfactants Deterg 15:757–763

    Article  CAS  Google Scholar 

  20. Rosen MJ, Kunjappu JT (2012) Wetting and its modification by surfactants. Surfactants interfacial phenom. Wiley, Hoboken, pp 272–307

    Chapter  Google Scholar 

  21. Cosgrove T (ed) (2010) Colloid science: principles, methods and applications, 2nd edn. Wiley-Blackwell, Chichester, West Sussex

    Google Scholar 

  22. Sesta B, Bonicelli MG, Ceccaroni GF, La Mesa C (1991) Micellization enthalpy of some alkylsulfobetaines in aqueous solution. Langmuir 7:1618–1621

    Article  CAS  Google Scholar 

  23. Xue C, Zhu H, Zhang T, Cao D, Hu Z (2011) Synthesis and properties of novel alkylbetaine zwitterionic gemini surfactants derived from cyanuric chloride. Colloids Surf Physicochem Eng Asp 375:141–146

    Article  CAS  Google Scholar 

  24. Birnie CR, Malamud D, Schnaare RL (2000) Antimicrobial evaluation of N-Alkyl Betaines and N-Alkyl-N,N-Dimethylamine Oxides with variations in chain length. Antimicrob Agents Chemother 44:2514–2517

    Article  CAS  Google Scholar 

  25. Hamouda T, Baker JR (2000) Antimicrobial mechanism of action of surfactant lipid preparations in enteric Gram-negative bacilli. J Appl Microbiol 89:397–403

    Article  CAS  Google Scholar 

  26. Viscardi G, Quagliotto P, Barolo C, Savarino P, Barni E, Fisicaro E (2000) Synthesis and surface and antimicrobial properties of novel cationic surfactants. J Org Chem 65:8197–8203

    Article  CAS  Google Scholar 

  27. Wu T, Xie AG, Tan SZ, Cai X (2011) Antimicrobial effects of quaternary phosphonium salt intercalated clay minerals on Escherichia coli and Staphylococci aureus. Colloids Surf B Biointerfaces 86:232–236

    Article  CAS  Google Scholar 

  28. Kofonow JM, Adappa ND (2012) In vitro Antimicrobial Activity of SinuSurf™. ORL J Oto-Rhino-Laryngol Its Relat Spec 74:179–184

    Article  CAS  Google Scholar 

  29. Mandal A, Meda V, Zhang WJ, Farhan KM, Gnanamani A (2012) Synthesis, characterization and comparison of antimicrobial activity of PEG/TritonX-100 capped silver nanoparticles on collagen scaffold. Colloids Surf B Biointerfaces 90:191–196

    Article  CAS  Google Scholar 

  30. Simonetti N, D’Auria FD, Strippoli V (1991) Increased in vitro Sensitivity of Candida albicans to Fluconazole. Chemotherapy 37:32–37

    Article  CAS  Google Scholar 

  31. Ward M, Sanchez M, Elasri MO, Lowe AB (2006) Antimicrobial activity of statistical polymethacrylic sulfopropylbetaines against gram-positive and gram-negative bacteria. J Appl Polym Sci 101:1036–1041

    Article  CAS  Google Scholar 

  32. Cheng G, Zhang Z, Chen S, Bryers JD, Jiang S (2007) Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 28:4192–4199

    Article  CAS  Google Scholar 

  33. Cheng G, Li G, Xue H, Chen S, Bryers JD, Jiang S (2009) Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials 30:5234–5240

    Article  CAS  Google Scholar 

  34. Liu H, Du Y, Yang J, Zhu H (2004) Structural characterization and antimicrobial activity of chitosan/betaine derivative complex. Carbohydr Polym 55:291–297

    Article  CAS  Google Scholar 

  35. Regen SL, Jayasuriya N, Fabianowski W (1989) Supramolecular surfactants: amphiphilic polymers designed to disrupt lipid membranes. Biochem Biophys Res Commun 159:566–571

    Article  CAS  Google Scholar 

  36. Zaky MF, Aiad IA, Tawfik SM (2015) Synthesis, characterization, surface and biocidal effect of some germinate nonionic surfactants. J Ind Eng Chem 21:1174–1182

    Article  CAS  Google Scholar 

  37. Oros G, Cserháti T, Forgács E (2003) Separation of the strength and selectivity of the microbiological effect of synthetic dyes by spectral mapping technique. Chemosphere 52:185–193

    Article  CAS  Google Scholar 

  38. Pérez L, Pinazo A, García MT, Lozano M, Manresa A, Angelet M, Vinardell MP, Mitjans M, Pons R, Infante MR (2009) Cationic surfactants from lysine: synthesis, micellization and biological evaluation. Eur J Med Chem 44:1884–1892

    Article  Google Scholar 

  39. Song M, Bielefeldt AR (2012) Toxicity and inhibition of bacterial growth by series of alkylphenol polyethoxylate nonionic surfactants. J Hazard Mater 219–220:127–132

    Article  Google Scholar 

  40. Hamouda T, Myc A, Donovan B, Shih AY, Reuter JD, Baker JR (2001) A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi. Microbiol Res 156:1–7

    Article  CAS  Google Scholar 

  41. Tiecco M, Cardinali G, Roscini L, Germani R, Corte L (2013) Biocidal and inhibitory activity screening of de novo synthesized surfactants against two eukaryotic and two prokaryotic microbial species. Colloids Surf B Biointerfaces 111:407–417

    Article  CAS  Google Scholar 

  42. Nagamune H, Maeda T, Ohkura K, Yamamoto K, Nakajima M, Kourai H (2000) Evaluation of the cytotoxic effects of bis-quaternary ammonium antimicrobial reagents on human cells. Toxicol In Vitro 14:139–147

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported with 03/32/DS-PB/0501 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daria Wieczorek.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wieczorek, D., Gwiazdowska, D., Staszak, K. et al. Surface and Antimicrobial Activity of Sulfobetaines. J Surfact Deterg 19, 813–822 (2016). https://doi.org/10.1007/s11743-016-1838-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-016-1838-3

Keywords

Navigation