Skip to main content
Log in

Performance of New Biodegradable Di-Sulfonate Surfactants as Hydrotropes in High-Temperature and Salinity Environments

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

Propyl alkyl ether sulfonate (PAES) surfactants, recently developed by The Dow Chemical Company, show excellent electrolyte, hard water and caustic solubility, with attractive ECOTOX profile and biodegradability. Due to their unique structure and properties, they are good candidates for use as hydrotropes in formulations containing nonionic surfactants. The goal of these studies was to evaluate hydrotropic efficiency of PAES materials via cloud point analysis. The effects of PAES alkyl tail length, concentration, and mono- and di-sulfonate components on the cloud point of TERGITOL™ 15-S-9 in solutions of varying electrolyte strength were investigated. In the presence of high electrolyte levels, PAES 12C had the highest hydrotropic efficiency of all materials tested, including commonly used commercial hydrotropes. Di-sulfonate components of the PAES materials were found to be more efficient hydrotropes than mono-sulfonate in high electrolyte environments for all tail lengths tested. The di/mono ratio and tail length were found to be critical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Matero A, Mattsson A, Svensson M (1998) Alkyl polyglucosides as hydrotropes. J Surfactants Deterg 1:485–489

    Article  CAS  Google Scholar 

  2. Burns RL (1999) Hydrotropic properties of a novel alkylnaphthalene sulfonate. J Surfactants Deterg 2:483–488

    Article  CAS  Google Scholar 

  3. Friberg SE, Lochhead RV, Blute I, Warnheim T (2004) Hydrotropes––performance chemicals. J Dispersion Sci Technol 25:243–251

    Article  CAS  Google Scholar 

  4. Rosen MJ (1989) Surfactants and Interfacial Phenomena. John Wiley, New York

    Google Scholar 

  5. da Silva RC, Spitzer M, da Silva LHM, Loh W (1999) Investigations on the mechanism of aqueous solubility increase caused by some hydrotropes. Thermochim Acta 328:161–167

    Article  Google Scholar 

  6. Bauduin P, Renoncourt A, Kopf D, Touraud D, Kunz W (2005) Unified concept of solubilization in water by hydrotropes and cosolvents. Langmuir 21:6769–6775

    Article  CAS  Google Scholar 

  7. Srinivas V, Rodley GA, Ravikumar K, Robinson WT, Turnbull MM, Balasubramanian D (1997) Molecular organization in hydrotrope assemblies. Langmuir 13:3235–3239

    Article  CAS  Google Scholar 

  8. Balasubramanian D, Srinivas V, Gaikar VG, Sharma MM (1989) Aggregation behavior of hydrotropic compounds in aqueous solutions. J Phys Chem 93:3865–3870

    Article  CAS  Google Scholar 

  9. Friberg SE (1997) Hydrotropes. Curr Opin Colloid Interface Sci 2:490–494

    Article  CAS  Google Scholar 

  10. Roy BK, Moulik SP (2003) Effect of hydrotropes on solution behavior of amphiphiles. Curr Sci 85:1148–1155

    CAS  Google Scholar 

  11. Lee J, Lee SC, Acharya G, Chang CJ, Park K (2003) Hydrotropic solubilization of paclitaxel: analysis of chemical structures for hydrotropic property. Pharm Res 20:1022–1030

    Article  CAS  Google Scholar 

  12. Coffman RE, Kildsig DO (1996) Hydrotropic solubilization–mechanistic studies. Pharm Res 13:1460–1463

    Article  CAS  Google Scholar 

  13. Goel SK (1999) Critical phenomena in the clouding behavior of nonionic surfactants induced by additives. J Colloid Interface Sci 212:604–606

    Article  CAS  Google Scholar 

  14. Hodgdon TK, Kaler EW (2007) Hydrotropic solutions. Curr Opin Colloid Interface Sci 12:121–128

    Article  CAS  Google Scholar 

  15. Friberg SE, Flaim T (1984) Hydrotropic function of a dicarboxylic acid. In: Rosen MJ (ed) Structure/performance relationships in surfactants. ACS symposium series 253. American Chemical Society, Washington, DC, p 107

  16. Robinson PL (1992) C-21 dicarboxylic acids in soap and detergent applications. J Am Oil Chem Soc 69:52–59

    Article  CAS  Google Scholar 

  17. Yu W, Rand C, Daugs E, Cheng Y, Graf I, Argenton A, Phillipson K (2011) Sulfonate surfactants and methods of preparation and use. US Patent 8,304,377

  18. Deshpande S, Wesson L, Wade D, Sabatini DA, Harwell JH (2000) DOWFAX surfactant components for enhancing contaminant solubilization. Water Res 34:1030–1036

    Article  CAS  Google Scholar 

  19. Harwell JH, Sabatini DA, Knox RC (1999) Surfactants for ground water remediation. Colloids Surf A 151:255–268

    Article  CAS  Google Scholar 

  20. Sabatini DA, Knox RC, Harwell JH, Soerens T, Chen L, Brown RE, West CC (1997) Design of a surfactant remediation field demonstration based on laboratory and modeling studies. Groundwater 35:954–963

    Article  CAS  Google Scholar 

  21. Wu Y, Rand CL, Yu W, Graf IV (2013) Compatible mixtures of anionic and cationic surfactants. US Patent 8,557,756

  22. Daugs E, Flick D, Rand C, Tulchinsky M, Yu W (2014) Process for Olefin Etherification. US Patent 8,722,944

  23. Smit M, Daugs E, Collins R (2011) Process for reducing inorganics from anionic surfactant solutions. WO 2012/078521

  24. Daugs E (2012) Process for reducing inorganics and concentrating anionic surfactant solutions. US Patent 2012/0078008

  25. Li J-L, Bai D-S, Chen B-H (2009) Effects of additives on the cloud points of selected nonionic linear ethoxylated alcohol surfactants. Colloids Surf A 346:237–243

    Article  CAS  Google Scholar 

  26. Huibers PDT, Shah DO, Katritzky AR (1997) Predicting surfactant cloud point from molecular structure. J Colloid Interface Sci 193:132–136

    Article  CAS  Google Scholar 

  27. Shigeta K, Olsson U, Kunieda H (2001) Correlation between micellar structure and cloud point in long poly(oxyethylene)n oleyl ether systems. Langmuir 17:4717–4723

    Article  CAS  Google Scholar 

  28. Gu T, Sjoblom J (1992) Surfactant structure and its relation to the Krafft point, cloud point and micellization: some empirical relationships. Colloids Surf 64:39–46

    Article  CAS  Google Scholar 

  29. Balzer D (1993) Cloud point phenomena in the phase behavior of alkyl polyglucosides in water. Langmuir 9:3375–3384

    Article  CAS  Google Scholar 

  30. Schott H, Royce AE, Han SK (1984) Effect of inorganic additives on solutions of nonionic surfactants. J Colloid Interface Sci 98:196–201

    CAS  Google Scholar 

  31. Kenkare PU, Hall CK, Kilpatrick PK (1996) The effect of salts on the lower consolute boundary of a nonionic micellar solution. J Colloid Interface Sci 184:456–468

    Article  CAS  Google Scholar 

  32. Huang Z, Gu T (1990) The effect of mixed cationic-anionic surfactants on the cloud point of nonionic surfactant. J Colloid Interface Sci 138:580–582

    Article  CAS  Google Scholar 

  33. Al-Ghamdi AM, Nasr-El-Din HA (1997) Effect of oilfield chemicals on the cloud point of nonionic surfactants. Colloids Surf A 125:5–18

    Article  CAS  Google Scholar 

  34. Valaulikar BS, Manohar C (1985) The mechanism of clouding in triton X-100: the effect of additives. J Colloid Interface Sci 108:403

    Article  CAS  Google Scholar 

  35. Gu TR, Qin SF, Ma CM (1989) The effect of electrolytes on the cloud point of mixed solutions of ionic and nonionic surfactants. J Colloid Interface Sci 127:586

    Article  CAS  Google Scholar 

  36. Hey MJ, Ilett SM, Davidson G (1995) Effect of temperature on poly (ethylene oxide) chains in aqueous solution. A viscometric, 1H NMR and Raman spectroscopic study. J Chem Soc, Faraday Trans 91:3897–3900

    Article  CAS  Google Scholar 

  37. Tasaki K (1996) Poly (Oxyethylene)-water interactions: a molecular dynamic study. J Am Chem Soc 118:8459–8469

    Article  CAS  Google Scholar 

  38. Sadaghiania AS, Khan A (1991) Clouding of a nonionic surfactant: the effect of added surfactants on the cloud point. J Colloid Interface Sci 144:191–200

    Article  CAS  Google Scholar 

  39. Israelachvili JN (1991) Intermolecular and Surface Forces. Academic, New York

    Google Scholar 

  40. Klaus A, Tiddy GJT, Rachel R, Trinh AP, Maurer E, Touraud D, Kunz W (2011) Hydtrotrope-induced inversion of salt effects on the cloud point of an extended surfactant. Langmuir 27:4403–4411

    Article  CAS  Google Scholar 

  41. Raney KH, Miller CA (1987) optimum detergency conditions with nonionic surfactants. II. Effect of hydrophobic additives. J Colloid Interface Sci 119:539

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Mardilovich Behr.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behr, A.M., Tucker, C.J. & Daugs, E.D. Performance of New Biodegradable Di-Sulfonate Surfactants as Hydrotropes in High-Temperature and Salinity Environments. J Surfact Deterg 18, 329–338 (2015). https://doi.org/10.1007/s11743-014-1651-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-014-1651-9

Keywords

Navigation