Skip to main content
Log in

Synthesis, Physico-Chemical Properties and Enhanced Oil Recovery Flooding Evaluation of Novel Zwitterionic Gemini Surfactants

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

In this work, a novel series of zwitterionic gemini surfactants with different hydrophobic tails were synthesized and characterized. The physico-chemical properties of these products (such as surface tension, oil/water interfacial tension, foaming ability, and the wetting ability of paraffin-coated sandstone) were fully studied. The CMC of the synthesized surfactants ranged from 2.17 × 10−4 mol L−1 to 5.36 × 10−4 mol L−1 and corresponding surface tension (γ CMC) ranged from 26.49 mN m−1 to 29.06 mN m−1, which showed excellent efficiency among the comparison surfactants. All the products can reduce the interfacial tension to a relatively low level of about 0.1–1.0 mN m−1. Additionally, results from applying different hydrocarbons suggested that the synergy will be clearer and oil/water interfacial tension will be lower if the oil components are similar to the surfactants. Contact angle and foaming measurements indicated that the surfactants exhibited good wetting and foaming abilities. The results of oil flooding experiments using an authentic sandstone microscopic model showed that C-12 and CA-12 could effectively improve the displacement efficiency by 21–29 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bunton CA, Robison LB, Schack J, Stam MF (1971) Catalysis of nucleophilic substitutions by micelles of dicationic detergent. J Org Chem 36:2346–2350

    Article  CAS  Google Scholar 

  2. Menger FM, Littau CA (1991) Gemini surfactants: synthesis and properties. J Am Chem Soc 113:1451–1452

    Article  CAS  Google Scholar 

  3. Afshar S, Yeung A (2012) Considerations when determining low interfacial tensions. J Colloid Interface Sci 364:276–278

    Article  Google Scholar 

  4. Sorenson GP, Coppage KL, Mahanthappa MK (2011) Unusually stable aqueous lyotropic gyroid phases from gemini dicarboxylate surfactants. J Am Chem Soc 133:14928–14931

    Article  CAS  Google Scholar 

  5. Snežana S, Christian W, Miroslav MS, Christel M (2009) Natural surfactant-based topical vehicles for two model drugs: influence of different lipophilic excipients on in vitro/in vivo skin performance. Int J Pharm 381:220–230

    Article  Google Scholar 

  6. Ma CZ, Han L, Jiang Z, Huang ZH, Feng J, Yao Y, Che SN (2011) Growth of mesoporous silica film with vertical channels on substrate using gemini surfactants. Chem Mater 23:3583–3586

    Article  CAS  Google Scholar 

  7. Menger FM, Keiper JS (2000) Gemini surfactants. Angew Chem Int Ed 39:1906

    Article  Google Scholar 

  8. Roberts GG (1990) Langmuir-Blodgett films. Plenum Press, New York

    Book  Google Scholar 

  9. Guo YJ, Liu JX, Zhang XM et al (2012) Solution property investigation of combination flooding systems consisting of gemini-non-ionic mixed surfactant and hydrophobically associating polyacrylamide for enhanced oil recovery. Energ Fuels 26:2116–2123

    Article  CAS  Google Scholar 

  10. Dong MZ, Ma SZ, Liu Q (2009) Enhanced heavy oil recovery through interfacial instability: a study of chemical flooding for Brintnell heavy oil. Fuel 88:1049–1056

    Article  CAS  Google Scholar 

  11. Arne S, Jan MG, Ole JM, Lisa T (1992) Optimization of a surfactant flooding process by core-flood experiments. J Pet Sci Eng 2:117–130

    Google Scholar 

  12. Zana R, Lévy H (1997) Alkanediylz-α, ω-bis(dimethylalkylammonium bromide) surfactants (dimeric surfactants) Part 6. CMC of the ethanediyl-1,2-bis(dimethylalkylammonium bromide) series. Colloids Surf A 127:229–232

    Article  CAS  Google Scholar 

  13. Zana R (2002) Dimeric (gemini) surfactants: effect of the spacer group on the association behavior in aqueous solution. J Colloid Interface Sci 248:203–220

    Article  CAS  Google Scholar 

  14. Zana R, Talmon Y (1993) Dependence of aggregate morphology on structure of dimeric surfactants. Nature 362:228–230

    Article  CAS  Google Scholar 

  15. Jaeger DA, Li B, Clark T Jr (1996) Cleavable double-chain surfactants with one cationic and one anionic head group that form vesicles. Langmuir 12:4314–4316

    Article  CAS  Google Scholar 

  16. Chen ZG, Liu GL, Chen MH, Peng YR, Wu MY (2009) Determination of nanograms of proteins based on decreased resonance light scattering of zwitterionic gemini surfactant. Anal Biochem 384:337–342

    Article  CAS  Google Scholar 

  17. Singh K, Marangoni DG (2007) Synergistic interactions in the mixed micelles of cationic gemini with zwitterionic surfactants: the pH and spacer effect. J Colloid Interface Sci 315:620–626

    Article  CAS  Google Scholar 

  18. Eastoe J, Dalton JS (1998) Dynamic surface tension and micelle structures of dichained phosphatidylcholine structure solutions. Langmuir 14:5719–5724

    Article  CAS  Google Scholar 

  19. Peresypkin AV, Menger FM (1999) Zwitterionic geminis. Coacervate formation from a single organic compound. J Org Lett 9:1347–1350

    Article  Google Scholar 

  20. Seredyuk V, Alami E, Nydén M, Holmberg K, Peresypkin AV, Menger FM (2002) Adsorption of zwitterionic gemini surfactants at the air-water and solid-water interfaces. Colloids Surf A 103:245–258

    Article  Google Scholar 

  21. Feng J, Liu XP, Zhang L, Zhao S, Yu JY (2011) Dilational viscoelasticity of the zwitterionic gemini surfactants with polyoxyethylene spacers at the interfaces. J Dispers Sci Technol 32:1537–1546

    Article  CAS  Google Scholar 

  22. Huang XJ, Xu ZK, Wan LS, Wang ZG, Wang JL (2005) Surface modification of polyacrylonitrile-based membranes by chemical reactions to generate phospholipid moieties. Langmuir 21:2941–2947

    Article  CAS  Google Scholar 

  23. Lankalapalli RS, Eckelkamp JT, Sircar D, Ford DA, Subbaiah PV, Bittman R (2009) Synthesis and antioxidant properties of an unnatural plasmalogen analogue bearing a trans o-vinyl ether linkage. Org Lett 11:2784–2787

    Article  CAS  Google Scholar 

  24. Zhang SY, Zou J, Zhang FW, Elsabahy M, Felder SE, Zhu JH, Pochan DJ, Wooley KL (2012) Rapid and versatile construction of diverse and functional nanostructures derived from a polyphosphoester-based biomimetic block copolymer system. J Am Chem Soc 134:18467–18474

    Article  CAS  Google Scholar 

  25. Sun YH, Feng YJ, Dong HW, Chen Z, Han LK (2007) Synthesis and aqueous solution properties of homologous gemini surfactant with different head groups. Cent Eur J CheM 5:620–634

    Article  CAS  Google Scholar 

  26. Drelich J, Bukka K, Miller JD, Hanson FV (1994) Surface tension of toluene-extracted bitumens from Utah oil sands as determined by Wilhelmy plate and contact angle techniques. Energ Fuels 8:700–704

    Article  CAS  Google Scholar 

  27. Rey AD (2000) Modeling the Wilhelmy surface tension method for nematic liquid crystals. Langmuir 16:845–849

    Article  CAS  Google Scholar 

  28. Cheng HL, Velankar SS (2009) Controlled jamming of particle-laden interfaces using a spinning drop tensiometer. Langmuir 25:4412–4420

    Article  CAS  Google Scholar 

  29. Sarafzadeh P, Hezave AZ, Ravanbakhsh M, Niazi A, Ayatollahi S (2013) Enterobacter cloacae as biosurfactant producing bacterium: differentiating its effects on interfacial tension and wettability alteration mechanisms for oil recovery during MEOR process. Colloids Surf B 105:223–229

    Article  CAS  Google Scholar 

  30. Pugh RJ (2007) Foaming in chemical surfactant free aqueous dispersions of anatase (titanium dioxide) particles. Langmuir 23:7972–7980

    Article  CAS  Google Scholar 

  31. Yamaguchi M, Kanoh C, Seemork J, Nobukawa S, Yanase K (2012) Effect of foaming method on mechanical properties of aqueous foams prepared from surfactant solution. Ind Eng Chem Res 51:14408–14413

    Article  CAS  Google Scholar 

  32. Djuve J, Pugh RJ, Sjoblom J (2001) Foaming and dynamic surface tension of aqueous polymer/surfactants solutions. 1: ethyl(hydroxyethyl) cellulose and sodium dodecyl sulphate. Colloids Surf A 186:189–202

    Article  CAS  Google Scholar 

  33. Milne AJB, Amirfazli A (2009) Drop shedding by shear flow for hydrophilic to superhydrophobic surfaces. Langmuir 25:14155–14164

    Article  CAS  Google Scholar 

  34. Kashaninejad N, Chan WK, Nguyen N (2012) Eccentricity effect of micropatterned surface on contact angle. Langmuir 28:4793–4799

    Article  CAS  Google Scholar 

  35. Negm NA, El-Hashash MA, Mohamed DE et al (2013) Gemini cationic surfactants: synthesis and influence of chemical structure on the surface activity. J Surfact Deterg 16:733–738

    Article  CAS  Google Scholar 

  36. Chen M, Luo L, Hu X, Yang J (2013) Synthesis and surface tension study of the spacer chain length effect on the adsorption and micellization properties of a new kind of carboxylate gemini surfactant. J Surfact Deterg 16:327–332

    Article  CAS  Google Scholar 

  37. Wu X, Zhao L, Wang X, Wang J, Zhang Y (2013) Synthesis and applications of tri-quaternary ammonium salt gemini surfactant. J Dispers Sci Technol 34:106–110

    Article  CAS  Google Scholar 

  38. Yang J, Xie J, Chen G et al (2009) Surface, interfacial and aggregation properties of sulfonic acid-containing gemini surfactants with different spacer lengths. Langmuir 25:6100–6105

    Article  CAS  Google Scholar 

  39. Han F, Wang P, Song J et al (2012) A surface rheological study of a glucosamide-based trisiloxane gemini surfactant at the air/water interface. J Dispers Sci Technol 33:1708–1714

    Article  CAS  Google Scholar 

  40. Negm NA, Zaki MF, Salem MA (2010) Antibacterial and antifungal activities-surface active properties relation of novel di Schiff base cationic gemini amphiphiles bearing homogeneous hydrophobes. J Dispers Sci Technol 31:1390–1395

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful for financial support from the National Natural Science Foundation of China (No. 21171139), Visiting Scholar Foundation of Northwest University and the National Science and Technology Pillar Program of China (No.2007BAB17B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianshe Zhao.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Zheng, Y. & Zhao, J. Synthesis, Physico-Chemical Properties and Enhanced Oil Recovery Flooding Evaluation of Novel Zwitterionic Gemini Surfactants. J Surfact Deterg 17, 1213–1222 (2014). https://doi.org/10.1007/s11743-014-1616-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-014-1616-z

Keywords

Navigation