Skip to main content
Log in

Fate of Triton X-100 Applications on Water and Soil Environments: A Review

  • Review Article
  • Published:
Journal of Surfactants and Detergents

Abstract

Triton X-100 applications as surfactant raises concern on water and soil environment due to its non-biodegradability and inhibition effect. This paper aims at reviewing Triton X-100 biodegradability and inhibition literature. It shows Triton X-100 is biodegradable by aerobic and anaerobic municipal wastewater sludge and Vibrio cyclitrophicus-sp-Nov organism. Adsorption and biodegradation are mechanisms of Triton removal. Triton inhibits anaerobic sludge organisms and some single aerobic organisms. Inhibition mechanisms are substrate shortage, physiological membrane-damaging and/or alteration in organism cell membrane. Thus Triton X-100 fate in the environment and its sustainable application can be controlled via proper selection of organism type, Triton concentration, and substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin S, Chen Y, Lin Y (1998) General approach for the development of high-performance liquid chromatography methods for biosurfactant analysis and purification. J Chromatogr A 825(2–6):149–159

    Article  CAS  Google Scholar 

  2. Peng X, Shi Z, Feng Y (2011) Rapid and high-throughput determination of cationic surfactants in environmental water samples by automated on-line polymer monolith microextraction coupled to high performance liquid chromatography–mass spectrometry. J Chromotogr A 1218:3588–3594

    Article  CAS  Google Scholar 

  3. Zeng G, Zhong H, Yuan X, Fu M, Wang W, Huang G (2007) Co-degradation with glucose of four surfactants, CTAB, Triton X-100, SDS and rhamnolipid, in liquid culture media and compost matrix. Biodegradation 18:303–310

    Article  CAS  Google Scholar 

  4. Heinig K, Vogt C (1997) Determination of Triton X-100 in influenza vaccine by high-performance liquid chromatography and capillary electrophoresis. Fresenius J Anal Chem 359:202–206

    Article  CAS  Google Scholar 

  5. Mohan P, Nakhla G, Yanful E (2006) Biodegradability of surfactants under aerobic, anoxic, and anaerobic conditions. J Environ Eng 132(2):279–283

    Article  CAS  Google Scholar 

  6. Mohan P, Nakhla G, Yanful E (2006) Biodegradability of surfactants under aerobic, anoxic, and anaerobic conditions. Water Res 40:533–540

    Article  CAS  Google Scholar 

  7. Cserhati T, Szoegyi M, Bordas B (1982) QSAR study on the biological activity of nonyl-phenyl-ethylene-oxide polymers. Gen Physiol Biophys 1:225–231

    Google Scholar 

  8. Laha S, Luthy R (1991) Inhibition of phenanthrene mineralization by non-ionic surfactants in soil-water systems. Environ Sci Technol 25:1920–1930

    Article  CAS  Google Scholar 

  9. Roch F, Alexander M (1995) Biodegradation of hydrophobic compounds in the presence of surfactants. Environ Toxicol Chem 14:1151–1158

    Article  CAS  Google Scholar 

  10. Gonzalez A, Gonzalez M, Rojas M, Monroy O (2001) Anaerobic digestion of a non-ionic surfactant: inhibition effect and biodegradation. Water Sci Technol 44(4):175–181

    Google Scholar 

  11. Tehrani D, Minooi S, Dehkordi F, Herfatmanesh A (2006) The effect of Triton X-100 on biodegradation of aliphatic and aromatic fractions of crude oil in soil. J Appl Sci 6(8):1756–1761

    Article  Google Scholar 

  12. Franska M, Franski R, Szymanski A, Lukaszweski Z (2003) A central fission pathway in alkylphenol ethoxylate biodegradation. Water Res 37:1005–1014

    Article  CAS  Google Scholar 

  13. Rosen MJ (2004) Surfactants and interfacial phenomena, 3rd edn. Wiley-Interscience, New York (ISBN:0-471-47818-0)

    Book  Google Scholar 

  14. Van Ginkel C, Dijk J, Kroon G (1992) Metabolism of hexadecyl trimethyl ammonium chloride in Pseudomonas strain B1. Appl Environ Microbiol 58(9):3083–3087

    Google Scholar 

  15. Volkering F, Breure A, Andel J, Rulkens W (1995) Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Appl Environ Microbiol 61(5):1699–1705

    CAS  Google Scholar 

  16. Swisher R (1987) Surfactant biodegradation. Surfactant science series 18. Marcel Dekker, New York

    Google Scholar 

  17. Tong S, Tan C (1993) Determination of branched and linear alkylbenzene sulfonates (BAS and LAS) in water using HPLC. Int J Environ Anal Chem 50:73–82

    Article  CAS  Google Scholar 

  18. Scott M, Jones M (2000) Review: the biodegradation of surfactant in the environment. Biochim Biophys Acta (BBA)—Biomembr Deterg Biomembr Stud 1508(1–2):235–251

    Article  CAS  Google Scholar 

  19. Ellis A, Hales S, Ur-Rehman N, White G (2002) Novel alkylsulfatases required for biodegradation of the branched primary alkyl sulfate surfactant 2-butyloctyl sulfate. Appl Environ Microbiol 68(1):31–36

    Article  CAS  Google Scholar 

  20. Lee C, Russell N, White G (1998) Development and validation of laboratory microcosms for anionic surfactant biodegradation by riverine biofilms. Water Res 32(8):2291–2298

    Article  CAS  Google Scholar 

  21. Garon D, Krivobok S, Wouessidjewe D, Seigle-Murandi F (2002) Influence of surfactants on solubilization and fungal degradation of fluorine. Chemosphere 47:303–309

    Article  CAS  Google Scholar 

  22. Keith L, Teillard W (1979) Priority pollutants. I-a: perspective view. Environ Sci Technol 13:416–423

    Article  Google Scholar 

  23. Dipple A, Cheng S, Bigger A (1990) Polycyclic aromatic hydrocarbon carcinogens. In: Pariza M, Aeschbacher HU, Felton JS, Sato S (eds) Mutagens in the diet. Wiley, New York, pp 109–127

    Google Scholar 

  24. Harayama S (1997) Polycyclic aromatic hydrocarbon bioremediation design. Curr Opin Biotechnol 8:268–275

    Article  CAS  Google Scholar 

  25. Zhang Y, Miller R (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 58:3276–3282

    CAS  Google Scholar 

  26. Rouse J, Sabatini D, Suflita J, Harwell J (1994) Influence of surfactants on microbial degradation of organic compounds. Crit Rev Environ Sci Technol 24:325–370

    Article  CAS  Google Scholar 

  27. Liu Z, Jacobson A, Luthy R (1995) Biodegradation of naphthalene in aqueous nonionic surfactant systems. Appl Environ Microbiol 61(1):145–151

    CAS  Google Scholar 

  28. Tsomides H, Hughes J, Thomas J, Ward C (1995) Effect of surfactant addition on phenanthrene biodegradation in sediments. Environ Toxicol Chem 14:953–959

    Article  CAS  Google Scholar 

  29. Robson R, Dennis E (1997) The size, shape, and hydration of nonionic surfactant micelles Triton X-100. J Phys Chem 81(11):1075–1078

    Google Scholar 

  30. Doong R, Lei W (2003) Solubilization and mineralization of polycyclic aromatic hydrocarbons by Pseudomonas putida in the presence of surfactant. J Hazard Mater B 96:15–27

    Article  CAS  Google Scholar 

  31. Chen P, Pickard M, Gray M (2000) Surfactant inhibition of bacterial growth on solid anthracene. Biodegradation 11:341–347

    Article  CAS  Google Scholar 

  32. Sigma-Aldrich (www.sigmaaldrich.com), product information Triton X-100, Saint Louis, Missouri 63103 USA; techserv@sial.com

  33. Stelmack P, Gray M, Pickard M (1999) Bacterial adhesion to soil contaminants in the presence of surfactants. Appl Environ Microbiol 65:163–168

    CAS  Google Scholar 

  34. Cserhati T, Szogyi M, Bordas B, Dobrovolsky A (1984) Structural requirements for the membrane damaging effect of non homologous series of non-ionic tensides. Quant Struct Act Relat 3:56–59

    Article  CAS  Google Scholar 

  35. Cserhati T, Illes Z, Nemes I (1991) Effect of non-ionic tensides on the growth of some soil bacteria. Appl Microbiol Biotechnol 35:115–118

    CAS  Google Scholar 

  36. Tiehm A (1994) Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl Environ Microbiol 60:258–263

    CAS  Google Scholar 

  37. Abd-allah A, Srorr T (1998) Biodegradation of anionic surfactants in the presence of organic contaminants. Water Res 32(3):944–947

    Article  CAS  Google Scholar 

  38. Somasundaran P, Shrotri S, Huang I (1998) Thermodynamics of adsorption of surfactants at solid liquid interface. Pure Appl Chem 70:621–626

    Article  CAS  Google Scholar 

  39. Allen C, Boyd D, Hempenstall F, Larkin M, Sharma N (1999) Contrasting effects of a nonionic surfactant on the biotransformation of polycyclic aromatic hydrocarbons to cis-dihydrodiols by soil bacteria. Appl Environ Microbiol 65(3):1335–1339

    CAS  Google Scholar 

  40. Atrat P, Koch B, Szekalla B, Horhold-Schubert C (1992) Application of newly synthesized detergents in the side chain degradation of plant sterols by Mycobacterium fortuitum. J Basic Microbiol 32:147–157

    Article  CAS  Google Scholar 

  41. Figueroa L, Miller J, Dawson H (1997) Biodegradation of two polyethoxylated nonionic surfactants in sequence batch reactors. Water Environ Res 69:1282–1297

    Article  CAS  Google Scholar 

  42. Alberts B, Bray D, Lewis J (1990) Biología molecular de la célula. Ediciones Omega, Barcelona

    Google Scholar 

  43. Guiot S, Pass A, Costernon J (1992) A structured model of the anaerobic granule consortium. Water Science Technol 25:1–10

    CAS  Google Scholar 

  44. Cerniglia C (1984) Microbial metabolism of polycyclic aromatic hydrocarbons. Adv Appl Microbiol 30:31–37

    Article  CAS  Google Scholar 

  45. Cerniglia C (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    Article  CAS  Google Scholar 

  46. Davies J, Evans W (1964) Oxidative metabolism of naphthalene by soil pseudomonads: the ring-fission mechanism. Biochem J 91:251–261

    CAS  Google Scholar 

  47. Hedlund B, Staley J (2001) Vibrio cyclotrophicus sp. nov., a polycyclic aromatic hydrocarbon (PAH)-degrading marine bacteria. Int J Syst Evol Microbiol 51:61–66

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Abu-Ghunmi.

About this article

Cite this article

Abu-Ghunmi, L., Badawi, M. & Fayyad, M. Fate of Triton X-100 Applications on Water and Soil Environments: A Review. J Surfact Deterg 17, 833–838 (2014). https://doi.org/10.1007/s11743-014-1584-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-014-1584-3

Keywords

Navigation